Answer:
Is there a picture to go with this because otherwise it's not enough info...
Step-by-step explanation:
Answer:
20 cm
Step-by-step explanation:
We are given a trapezoid, where the length of shorter base or on of the parllel line is 16 cm and the length of other parallel side is 24 cm.
Let the two parallel sides be x and y that is x = 16 cm and y = 24 cm.
A median of a trapezoid is a line segment that divides the non parallel sides of a trapezoid equally or a line segment that passes through the mid points of non-parallel sides of a trapezoid.
The length of median of a trapezoid =
=
= 20 cm.
Thus, the length of median of trapezoid is 20 cm.
Lauren can have as many as 21 one beads to 1 bead
Answer:
26.11% of the test scores during the past year exceeded 83.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
It is known that for all tests administered last year, the distribution of scores was approximately normal with mean 78 and standard deviation 7.8. This means that
.
Approximately what percentatge of the test scores during the past year exceeded 83?
This is 1 subtracted by the pvalue of Z when
. So:



has a pvalue of 0.7389.
This means that 1-0.7389 = 0.2611 = 26.11% of the test scores during the past year exceeded 83.
Answer:
0.058 is the required probability.
Step-by-step explanation:
We are given the following PMF in the question:
x: 0 1 2
p(x): 0.24 0.15 0.61

Z can take values 0, 1, 2, 3, 4.
We have to compute the value of P(Z=0)

Thus,
