Answer:
please give me brainlist and follow
Explanation:
Example of an irreverseble isothermal process is mixing of two fluids on the same temperature - it requires a lot of energy to unmix Jack and coke. ... Example of an reversible process with changing temperature is isentropic expansion.
Answer:
A) strength decreases, chemical resistance decreases, and thermal insulation increases
Explanation:
Strength always decreases, chemical resistence decreases, and thermal condictivity must be reduced therefore themal insulation must increase.
Answer:
you might be facing some difficulty in observing this point of division between your question and me
Answer:
Explanation:
A plane wall of thickness 2L=40 mm and thermal conductivity k=5W/m⋅Kk=5W/m⋅K experiences uniform volumetric heat generation at a rateq
˙
q
q
˙
, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T∞=20∘CT
∞
=20
∘
C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x)=a+bx+cx2T(x)=a+bx+cx
2
where a=82.0∘C,b=−210∘C/m,c=−2×104C/m2a=82.0
∘
C,b=−210
∘
C/m,c=−2×10
4
C/m
2
, and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) Sketch the temperature distribution and identify significant physical features. (b) What is the volumetric rate of heat generation q in the wall? (c) Determine the surface heat fluxes, q
′′
x
(−L)q
x
′′
(−L) and q
′′
x
(+L)q
x
′′
(+L). How are these fluxes related to the heat generation rate? (d) What are the convection coefficients for the surfaces at x=-L and x=+L? (e) Obtain an expression for the heat flux distribution q
′′
x
(x)q
x
′′
(x). Is the heat flux zero at any location? Explain any significant features of the distribution. (f) If the source of the heat generation is suddenly deactivated (q=0), what is the rate of change of energy stored in the wall at this instant? (g) What temperature will the wall eventually reach with q=0? How much energy must be removed by the fluid per unit area of the wall (J/m2)(J/m
2
) to reach this state? The density and specific heat of the wall material are 2600kg/m32600kg/m
3
and 800J/kg⋅K800J/kg⋅K, respectively.
Answer:
critical clearing angle = 70.3°
Explanation:
Generator operating at = 50 Hz
power delivered = 1 pu
power transferable when there is a fault = 0.5 pu
power transferable before there is a fault = 2.0 pu
power transferable after fault clearance = 1.5 pu
using equal area criterion to determine the critical clearing angle
Attached is the power angle curve diagram and the remaining part of the solution.
The power angle curve is given as
= Pmax sinβ
therefore : 2sinβo = Pm
2sinβo = 1
sinβo = 0.5 pu
βo =
⁰
also ; 1.5sinβ1 = 1
sinβ1 = 1/1.5
β1 =
= 41.81⁰
∴ βmax = 180 - 41.81 = 138.19⁰
attached is the remaining solution
The critical clearing angle =
≈ 70.3⁰