Answer: The required system of equations are
y = 30x
13x + y = 258
Step-by-step explanation:
Let x represent the number of hours
that the driver worked.
Let y represent the number of miles that the truck drove.
For every truck that goes out, Mason must pay the driver $13 per hour of driving and also has an expense of $1 per mile driven for gas and maintenance. If on a particular day, his total expenses for the driver, gas and truck maintenance were $258, it means that
13x + y = 258
On that particular day, the driver drove an average of 30 miles per hour.
Speed = distance/time
It means that
y/x = 30
y = 30x
System 1: The solution is (x, y) = (-4, 5)
System 2: The solution is 
<em><u>Solution:</u></em>
<em><u>Given system of equations are:</u></em>
2x + 3y = 7 ------ eqn 1
-3x - 5y = -13 --------- eqn 2
We can solve by elimination method
Multiply eqn 1 by 3
6x + 9y = 21 ------ eqn 3
Multiply eqn 2 by 2
-6x - 10y = -26 ------- eqn 4
Add eqn 3 and eqn 4
6x + 9y -6x - 10y = 21 - 26
-y = -5
y = 5
Substitute y = 5 in eqn 1
2x + 3(5) = 7
2x + 15 = 7
2x = -8
x = -4
Thus the solution is (x, y) = (-4, 5)
<h3><em><u>
Second system of equation is:</u></em></h3>
8 - y = 3x ------ eqn 1
2y + 3x = 5 ----- eqn 2
We can solve by susbtitution method
From given,
y = 8 - 3x ----- eqn 3
Substitute eqn 3 in eqn 2
2(8 - 3x) + 3x = 5
16 - 6x + 3x = 5
3x = 16 - 5
3x = 11

Substitute the above value of x in eqn 3
y = 8 - 3x

Thus the solution is 
Answer:
b=6
Step-by-step explanation:
csc(x°) = LN/NM
5/4 = 22.5/(3b)
b = 22.5·4/(5·3)
b = 6
The taxi driver doesn't give anyone a ride unless it's 2 miles away, as such you need to add at least $0.55x2 in addition to the $1.75 at the start
1.75+(0.55x2)=2.85
As Susie only has 10 dollars to spend, she can't exceed that. So Susie must spend more than $2.85(minimum from the taxi) and less than $10(her money)
so,
$2.85<Susie<$10