Answer:
Intensity of beam 18 feet below the surface is about 0.02%
Explanation:
Using Lambert's law
Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium
then dI / I = kdt
taking log,
ln(I) = kt + ln C
I = Ce^kt
t=0=>I=I(0)=>C=I(0)
I = I(0)e^kt
t=3 & I=0.25I(0)=>0.25=e^3k
k = ln(0.25)/3
k = -1.386/3
k = -0.4621
I = I(0)e^(-0.4621t)
I(18) = I(0)e^(-0.4621*18)
I(18) = 0.00024413I(0)
Intensity of beam 18 feet below the surface is about 0.2%
Answer:
Normal Conversation: i=106i0
i(dB)=60
Power saw a 3 feet: i=1011i0
i(dB)=110
Jet engine at 100 feet: i=1018i0
i(dB)=180
Explanation:
if these are the same as edge, then these are the answers! :)
Answer:
aₓ = 0
, ay = -6.8125 m / s²
Explanation:
This is an exercise that we can solve with kinematics equations.
Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.
x axis
vₓ = v₀ₓ = 1.10 m / s
aₓ = 0
y axis
initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration
= v_{oy} -ay t
ay = (v_{oy} -v_{y}) / t
ay = (0 -10.9) / 1.6
ay = -6.8125 m / s²
the sign indicates that the acceleration goes in the negative direction of the y axis
Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring?
0.57 m
0.64 m
0.80 m
1.25 m
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m (or 0.80 m)
_________________________________________
I Hope this helps, greetings ... Dexteright02! =)
The correct answer are
a) "The number of muscle fibers best determines how powerful a muscle will be"
b) "The more a muscle shortens, the more power it generates."
Reason :
Muscle fiber in longitudinal directions generate more power
Multipennate muscles do not produce much power because the tendon branches within muscle
.