answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Burka [1]
2 years ago
9

The ground temperature a few meters below the surface is fairly constant throughout the year and is near the average value of th

e air temperature. In areas in which the air temperature drops very low in the winter, the exterior unit of a heat pump designed for heating is sometimes buried underground in order to use the earth as a thermal reservoir.Why is it worthwhile to bury the heat exchanger, even if the underground unit costs more to purchase and install than one above ground?
Engineering
1 answer:
JulijaS [17]2 years ago
6 0

Since the Earth contains a constant temperature range heat exchangers can be built underground without other added expenses yes they are expensive to put underground but the pay off is greater long term wise since the heat rises it can be said you could put a heatpump in a small area and it can over time increase the relative heat in that area of effect.

hope this helps look into, heat displacement thru underground heating to get a clearer picture

You might be interested in
Write multiple if statements: If carYear is before 1967, print "Probably has few safety features." (without quotes). If after 19
Free_Kalibri [48]

Answer:

The solution code is written in Python 3.

  1. carYear = 1995
  2. if(carYear < 1967):
  3.    print("Probably has few safety features.\n")
  4. if(carYear > 1970):
  5.    print("Probably has head rests. \n")
  6. if(carYear > 1991):
  7.    print("Probably has electronic stability control.\n")
  8. if(carYear > 2002):
  9.    print("Probably has airbags. \n")

Explanation:

Firstly, create a variable, <em>carYear</em> to hold the value of year of the car make. (Line 1)

Next, create multiple if statements as required by the question (Line 3-13). The operator "<" denotes "smaller" and therefore <em>carYear < 1967</em> means any year before 1967. On another hand, the operator ">" denotes "bigger" and therefore <em>carYear > 1970 </em>means any year after 1970.

The print statement in each of the if statements is done using the Python built-in function <em>print()</em>. The "\n" is an escape sequence that create a new line at the end of each printed phrase.

5 0
2 years ago
The fatigue data for a brass alloy are given as follows: Stress Amplitude (MPa) Cycles to Failure 170 3.7 × 104 148 1.0 × 105 13
prohojiy [21]

Answer:

i) S–N plot is attached

ii) fatigue strength = 100 MPa

iii) fatigue life = 5.62 x 10^(5) cycles

Explanation:

i) I have attached the S–N plot (stress amplitude versus logarithm of cycles to failure)

ii) The question says we should find the fatigue strength at 4 × 10^(6) cycles.

So let's find the log of this and trace it on the graph attached.

Log(4 × 10^(6)) = 6.6

From the graph attached, at log of cycle value of 6.6, the fatigue strength is approximately 100 MPa

iii) The question says we should find the fatigue life for 120 MPa.

Thus, from the graph, at stress amplitude of 120 MPa, the log of cycles is approximately 5.75.

Thus,the fatigue life will be the inverse log of 5.75.

Thus, fatigue life = 10^(5.75)

Fatigue life = 5.62 x 10^(5)

8 0
2 years ago
An excited electron in an Na atom emits radiation at a wavelength 589 nm and returns to the ground state. If the mean time for t
11Alexandr11 [23.1K]

Answer:   Inherent width in the emission line: 9.20 × 10⁻¹⁵ m or 9.20 fm

                length of the photon emitted: 6.0 m

Explanation:

The emitted wavelength is 589 nm and the transition time is ∆t = 20 ns.

Recall the Heisenberg's uncertainty principle:-

                                 ∆t∆E ≈ h ( Planck's Constant)

The transition time ∆t corresponds to the energy that is ∆E

E=h/t = \frac{(1/2\pi)*6.626*10x^{-34} J.s}{20*10x^{-9} } = 5.273*10x^{-27} J =  3.29* 10^{-8} eV.

The corresponding uncertainty in the emitted frequency ∆v is:

∆v= ∆E/h = (5.273*10^-27 J)/(6.626*10^ J.s)=  7.958 × 10^6 s^-1

To find the corresponding spread in wavelength and hence the line width ∆λ, we can differentiate

                                                    λ = c/v

                                                    dλ/dv = -c/v² = -λ²/c

Therefore,

      ∆λ = (λ²/c)*(∆v) = {(589*10⁻⁹ m)²/(3.0*10⁸ m/s)} * (7.958*10⁶ s⁻¹)

                                 =  9.20 × 10⁻¹⁵ m or 9.20 fm

     The length of the photon (<em>l)</em> is

l = (light velocity) × (emission duration)

  = (3.0 × 10⁸  m/s)(20 × 10⁻⁹ s) = 6.0 m          

                                                   

6 0
2 years ago
A horizontal, cylindrical, tank, with hemispherical ends, is used to store liquid chlorine at 10 bar. The vessel is 4 m internal
sp2606 [1]

Answer: 0.021818m =2.18x10^-²m

Explanation: Using Laplace principle

Design pressure is =12 bar= 1200000N/m²

T = Wall thickness

Design stress=110Mn/m²= 110,000,000N/m²

Radius= diameter/2 =4/2=2m

Design stress=Hoop stress =Pr/t where p=internal pressure or internal pressure, r=radius and t= wall thickness.

As Laplace equation stated.

110,000,000= 1,2000,00 x 2/t

t= 2,400,000/110,000,000.

t= 0.021818m

t=2.18x10^-2m.

3 0
2 years ago
What properties should the head of a carpenter’s hammer possess? How would you manufacture a hammer head?
BabaBlast [244]

Properties of Carpenter's hammer possess

Explanation:

1.The head of a carpenter's hammer should possess the impact resistance, so that the chips do not peel off the striking face while working.

2.The hammer head should also be very hard, so that it does not deform while driving or eradicate any nails in wood.

3.Carpenter's hammer is used to impact smaller areas of an object.It can drive nails in the wood,can crush  the rock and shape the metal.It is not suitable for heavy work.

How hammer head is manufactured :

1.Hammer head is produced by metal forging process.

2.In this process metal is heated and this molten metal is placed in the cavities said to be dies.

3.One die is fixed and another die is movable.Ram forces the two dies under the forces which gives the metal desired shape.

4.The third process is repeated for several times.

5 0
2 years ago
Other questions:
  • The pressure at any point in a static fluid depends only on the Select one a)- depth, surface pressure, and specific weight. b)-
    11·1 answer
  • A gas metal arc welder is also known as a _____ welder.
    5·1 answer
  • As shown, a load of mass 10 kg is situated on a piston of diameter D1 = 140 mm. The piston rides on a reservoir of oil of depth
    9·1 answer
  • An excavation is at risk for cave-in and water accumulation because of the excess soil that has accumulated. What type of excava
    12·1 answer
  • 2.31 LAB: Simple statistics Part 1 Given 4 integers, output their product and their average, using integer arithmetic. Ex: If th
    5·2 answers
  • A pipe is insulated such that the outer radius of the insulation is less than the critical radius. Now the insulation is taken o
    11·1 answer
  • Consider water at 27°C in parallel flow over an isothermal, 1‐m‐long flat plate with a velocity of 2 m/s. a) Plot the variation
    15·1 answer
  • A thin, flat plate that is 0.2 m × 0.2 m on a side is oriented parallel to an atmospheric airstream having a velocity of 40 m/s.
    5·2 answers
  • You are the scheduler for a large commercial building project. The schedule that you prepared (based on feedback from the projec
    7·1 answer
  • Most fatal collisions in Florida happen during
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!