Answer:
Let x be the value of the house before increase
Since it's increases add 7% to the overall 100%
107/100x = 749000
x = 700000
The value of the house before increase is £700000.
Hope this helps.
Answer:

Step-by-step explanation:
given is the Differential equation in I order linear as

Take Laplace on both sides
![L(y') +4L(y) = 48L(t)\\sY(s)-y(0) +4Y(s) = 48 *\frac{1}{s^2} \\Y(s) [s+4]=\frac{48}{s^2}+9\\Y(s) = \frac{1}{s^2(s+4)}+\frac{9}{s+4}](https://tex.z-dn.net/?f=L%28y%27%29%20%2B4L%28y%29%20%3D%2048L%28t%29%5C%5CsY%28s%29-y%280%29%20%2B4Y%28s%29%20%3D%2048%20%2A%5Cfrac%7B1%7D%7Bs%5E2%7D%20%5C%5CY%28s%29%20%5Bs%2B4%5D%3D%5Cfrac%7B48%7D%7Bs%5E2%7D%2B9%5C%5CY%28s%29%20%3D%20%5Cfrac%7B1%7D%7Bs%5E2%28s%2B4%29%7D%2B%5Cfrac%7B9%7D%7Bs%2B4%7D)
Now if we take inverse we get y(t) the solution
Thus the algebraic equation would be
Answer:
a. z = 2.00
Step-by-step explanation:
Hello!
The study variable is "Points per game of a high school team"
The hypothesis is that the average score per game is greater than before, so the parameter to test is the population mean (μ)
The hypothesis is:
H₀: μ ≤ 99
H₁: μ > 99
α: 0.01
There is no information about the variable distribution, I'll apply the Central Limit Theorem and approximate the sample mean (X[bar]) to normal since whether you use a Z or t-test, you need your variable to be at least approximately normal. Considering the sample size (n=36) I'd rather use a Z-test than a t-test.
The statistic value under the null hypothesis is:
Z= X[bar] - μ = 101 - 99 = 2
σ/√n 6/√36
I don't have σ, but since this is an approximation I can use the value of S instead.
I hope it helps!
Wei la dooblave hexagono 8 solutes x n o solutes = questionnairre
X - Jack's age
y - Susan's age
Jack is 27 years older than Susan.

In 5 years he will be 4 times as old as she is.

The system of equations:

Jack is 31 years old and Susan is 4 years old.