Answer : The grams of
consumed is, 89.6 grams.
Solution : Given,
Mass of
= 265 g
Molar mass of
= 80 g/mole
Molar mass of
= 28 g/mole
First we have to calculate the moles of
.

The given balanced reaction is,

from the reaction, we conclude that
As, 1 mole of
produces from 1 mole of 
So, 3.2 moles of
produces from 3.2 moles of 
Now we have to calculate the mass of 


Therefore, the grams of
consumed is, 89.6 grams.
We can predict the order of the elements given above according from the highest to lowest first ionization energies by using the trends in a periodic table. For elements in a family, the ionization energy decreases as it goes down. Therefore, the correct order would be Be, Mg, Ca, Sr.
Answer:
22.8 L
Step-by-step explanation:
We can use <em>Gay-Lussac's Law of Combining Volumes</em> to solve this problem:
Gases <em>at the same temperature and pressure</em> react in simple whole-number ratios.
1. Write the chemical equation.
Ratio: 2 L 1 L
Ca(s) + 2HCl(g) ⟶ CaCl₂(s) + H₂(g)
V/L: 11.4
2. Calculate the volume of HCl.
According to the law, 2 L of HCl form 1 L of H₂.
Then, the conversion factor is (2 L HCl/1 L H₂).
Volume of HCl = 11.4 L H₂ × (2 L HCl/1 L H₂)
= 22.8 L HCl
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
I'm going to suppose you want the adjusted chemical reaction, using the formulas of the compounds. You can see it in the image attached.