I suppose

The vectors that span
form a basis for
if they are (1) linearly independent and (2) any vector in
can be expressed as a linear combination of those vectors (i.e. they span
).
Compute the Wronskian determinant:

The determinant is non-zero, so the vectors are linearly independent. For this reason, we also know the dimension of
is 3.
Write an arbitrary vector in
as
. Then the given vectors span
if there is always a choice of scalars
such that

which is equivalent to the system

The coefficient matrix is non-singular, so it has an inverse. Multiplying both sides by that inverse gives

so the vectors do span
.
The vectors comprising
form a basis for it because they are linearly independent.
Answer:
(0,-7)
Step-by-step explanation:
If nay point is form (x,y)
x is abscissa can be also called x axis coordinate
y is ordinate can be also called y axis coordinate
ordiantes are points lying on y axis.
For any point lying on y axis, its x-axis coordinate will be 0
given that ordinate is -7. it means that value of y coordinate is -7
Thus, coordinates of the point is (0,-7)
Answer:
x = 10
Step-by-step explanation:
l n 20 + l n 5 = 2 l n x
ln (20×5) = ln x²
ln(100) = lnx²
100 = x²
x = +/- 10
Since logs of negative numebrs don't exist, we reject -10
Answer:
<u></u>
Explanation:
The figure attached shows the <em>Venn diagram </em>for the given sets.
<em />
<em><u>a) What is the probability that the number chosen is a multiple of 3 given that it is a factor of 24?</u></em>
<em />
From the whole numbers 1 to 15, the multiples of 3 that are factors of 24 are in the intersection of the two sets: 3, 6, and 12.
There are a total of 7 multiples of 24, from 1 to 15.
Then, there are 3 multiples of 3 out of 7 factors of 24, and the probability that the number chosen is a multiple of 3 given that is a factor of 24 is:
<em><u /></em>
<em><u>b) What is the probability that the number chosen is a factor of 24 given that it is a multiple of 3?</u></em>
The factors of 24 that are multiples of 3 are, again, 3, 6, and 12. Thus, 3 numbers.
The multiples of 3 are 3, 6, 9, 12, and 15: 5 numbers.
Then, the probability that the number chosen is a factor of 24 given that is a multiple of 3 is:
1+7 and 7+1 are the same equations. The numbers are just switched around .
Example:
1+2=3
2+1+3
<span>They add up to the same answer no matter where they are placed, therefore knowing 1+7 helps you find the sum of 7+1 (again, because they are the same) </span>