To find the answer to this, you have multiply both expressions by each other. To do this, you have to multiply each term in the first expression by each term in the second expressions. This yields the following: 3x^4-9x^3-3x^2+5x^3-15x^2-5x+10x^2-30x-10. Combing like terms and simplifying gives the final expression: 3x^4 - 4x^3 - 8x^2 - 35x - 10
We have that
h(t) = –16t²<span> + 14t
using a graph tool
see the attached figure
</span><span>the cricket’s hang time is the difference between point (0,0) and (0.875,0)
</span>(0.875-0)=0.875 sec
the answer is 0.875 sec
Answer:
answer is

Step-by-step explanation:
After working this way for 6 months he takes a simple random sample of 15 days. He records how long he walked that day (in hours) as recorded by his fitness watch as well as his billable hours for that day as recorded by a work app on his computer.
Slope is -0.245
Sample size n = 15
Standard error is 0.205
Confidence level 95
Sognificance level is (100 - 95)% = 0.05
Degree of freedom is n -2 = 15 -2 = 13
Critical Value =2.16 = [using excel = TINV (0.05, 13)]
Marginal Error = Critical Value * standard error
= 2.16 * 0.205
= 0.4428

<u><em>Answer:</em></u>
AC = 10sin(40°)
<u><em>Explanation:</em></u>
The diagram representing the question is shown in the attached image
Since the given triangle is a right-angled triangle, we can apply the special trig functions
<u>These functions are as follows:</u>
sin(θ) = opposite / hypotenuse
cos(θ) = adjacent / hypotenuse
tan(θ) = opposite / adjacent
<u>Now, in the given diagram:</u>
θ = 40°
AC is the side opposite to θ
AB = 10 in is the hypotenuse
<u>Based on these givens</u>, we will use the sin(θ) function
<u>Therefore:</u>

Answer:
x = 11, y = 8
Step-by-step explanation:
ΔABC and ΔFDE are congruent by the postulate SSS
Equate the congruent sides in the 2 triangles
BC = ED, that is
x + 3 = 14 ( subtract 3 from both sides )
x = 11
-------------------------------------
DF = AB, that is
x - y = 3 ← substitute x = 11
11 - y = 3 ( subtract 11 from both sides )
- y = 3 - 11 = - 8 ( multiply both sides by - 1 )
y = 8