answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zanzabum
2 years ago
11

Two sets of flasks are connected by a hollow copper pipe, as shown. Which set will change the temperature most quickly?

Chemistry
2 answers:
Dennis_Churaev [7]2 years ago
8 0
Hmm. I'm not 100% sure but. I'm pretty sure it's A because the heated water is below and there's a hotter temp. Also because it's copper, heat will move more quickly. I'm not 100% sure, are there notes you can check?
ololo11 [35]2 years ago
8 0

Answer:

set A: cold water above hot water

Explanation:

The hot water would rise and cold water would sink. This is because hot water is less dense than cold water and would quickly rise and mix with the cold water which would tend to sink. The temperature would change quickly as heat would be transferred from hot to cold till both are in thermal equilibrium.

After a while, in setup B as well, the water would come into thermal equilibrium as water would lose thermal energy to cold water but it will take some time.

You might be interested in
A soft drink contains 11.5% sucrose (C12H22O11) by mass. How much sucrose, in grams, is contained in 355 mL (12 oz) of the soft
luda_lava [24]

Answer:

42.5 g

Explanation:

Calculate the mass of the soft drink given the density and volume:

355 mL × 1.04 g/mL = 369.2 g

Now calculate the mass of sucrose given the percentage:

0.115 × 369.2 g = 42.46 g

Rounded to 3 significant figures, the mass is 42.5 g.

5 0
2 years ago
Read 2 more answers
A sample of cacl2⋅2h2o/k2c2o4⋅h2o solid salt mixture is dissolved in ~150 ml de-ionized h2o. the oven dried precipitate has a ma
Paraphin [41]

We are given that the balanced chemical reaction is:

cacl2⋅2h2o(aq) + k2c2o4⋅h2o(aq) ---> cac2o4⋅h2o(s) + 2kcl(aq) + 2h2o(l)

We known that the product was oven dried, therefore the mass of 0.333 g pertains only to that of the substance cac2o4⋅h2o(s). So what we will do first is to convert this into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is molar mass of cac2o4 plus the molar mass of h2o.

molar mass cac2o4⋅h2o(s) = 128.10 + 18 = 146.10 g /mole

moles cac2o4⋅h2o(s) = 0.333 / 146.10 = 2.28 x 10^-3 moles

Looking at the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is 1:1, therefore:

moles k2c2o4⋅h2o(aq) = 2.28 x 10^-3 moles

Converting this to mass:

mass k2c2o4⋅h2o(aq) = 2.28 x 10^-3 moles (184.24 g /mol) = 0.419931006 g

 

Therefore:

The mass of k2c2o4⋅<span>h2o(aq) in the salt mixture is about 0.420 g</span>

3 0
2 years ago
Read 2 more answers
The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed wit
Tamiku [17]

The question is incomplete, the complete question is;

The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed with water. The student claimed that the data did not provide enough evidence to determine whether a chemical or physical change took place and that additional tests were needed. Which of the following identifies the best way to gather evidence to support the type of change that occurred when water and Xwere mixed?

A. Measuring the melting point of the mixture of water and X

B. Adding another substance to the mixture of water and X to see whether a solid forms

C Measuring and comparing the masses of the water,  X, and the mixture of water and X

D Measuring the electrical conductivities of X and the mixture of water and X

Answer:

D Measuring the electrical conductivities of X and the mixture of water and X

Explanation:

Unfortunately, I am unable to reproduce the table here. However, from the table,  the temperature of the of the mixture of the solid X and water was 101.6°C. This is above the boiling point of water and way below the temperature of the solid X.

This goes a long way to suggest that there was some kind of interaction between the water and X which accounted for the observed temperature of the system of X in water.

The only way we can be able to confirm if X actually dissolved in water is to measure the conductivity of the water. dissolved solids increase the conductivity of water.

6 0
2 years ago
Rank the formation of the solutions A, B, and C from the most exothermic to the most endothermic. Rank the enthalpy of solution
Elodia [21]

This is an incomplete question, the table is attached below.

Answer : The correct ranking of the solution from most exothermic to most endothermic will be: A, B and C.

Explanation :

As we know that the intermolecular force of attraction play an important role in the interaction of solute-solute, solute-solvent and solvent solvent solution.

In the solution A, the solute-solute and solvent-solvent interactions are weak. So, their solute-solvent interaction will be strong. That means, the solution will be more exothermic.

In the solution C, the solute-solute and solvent-solvent interactions are strong. So, their solute-solvent interaction will be weak. That means, the solution will be more endothermic.

Thus, the correct ranking of the solution from most exothermic to most endothermic will be: A, B and C.

4 0
2 years ago
When the reaction CO2(g) + H2(g) ⇄ H2O(g) + CO(g) is at equilibrium at 1800◦C, the equilibrium concentrations are found to be [C
UNO [17]

Answer:

The new molar concentration of CO at equilibrium will be  :[CO]=1.16 M.

Explanation:

Equilibrium concentration of all reactant and product:

[CO_2] = 0.24 M, [H_2] = 0.24 M, [H_2O] = 0.48 M, [CO] = 0.48 M

Equilibrium constant of the reaction :

K=\frac{[H_2O][CO]}{[CO_2][H_2]}=\frac{0.48 M\times 0.48 M}{0.24 M\times 0.24 M}

K = 4

CO_2(g) + H_2(g) \rightleftharpoons H_2O(g) + CO(g)

Concentration at eq'm:

0.24 M          0.24 M                 0.48 M            0.48 M

After addition of 0.34 moles per liter of CO_2 and H_2 are added.

(0.24+0.34) M    (0.24+0.34) M  (0.48+x)M         (0.48+x)M

Equilibrium constant of the reaction after addition of more carbon dioxide and water:

K=4=\frac{(0.48+x)M\times (0.48+x)M}{(0.24+0.34)\times (0.24+0.34) M}

4=\frac{(0.48+x)^2}{(0.24+0.34)^2}

Solving for x: x = 0.68

The new molar concentration of CO at equilibrium will be:

[CO]= (0.48+x)M = (0.48+0.68 )M = 1.16 M

3 0
2 years ago
Other questions:
  • Recalling that a beaker of water is two dimensional, what is the three dimensional shape of the micelle
    12·1 answer
  • What mass of calcium carbonate (in grams) can be dissolved by 4.0 g of hcl? (hint: begin by writing a balanced equation for the
    14·2 answers
  • What is the number of moles of <br> 0.0960g of H2SO4
    10·1 answer
  • \al(s) + 3agno3(aq) → al(no3)3(aq) + 3ag(s) this equation represents which type of chemical reaction?
    13·1 answer
  • In part 2 of the experiment, you will be analyzing a sample of household bleach. A 0.0854 g sample of household bleach is comple
    7·1 answer
  • According to the experimental procedure of Experiment F1, 135 microliters of acetophenone (120.15 g/mol, 1.03 g/mL) was reacted
    9·1 answer
  • Which will not appear in the equilibrium constant expression for the reaction below?
    8·1 answer
  • A 1.555-g sample of baking soda decomposes with heat to produce 0.991 g Na2CO3. Refer to Example Exercise 14.l and show the calc
    10·1 answer
  • What is the IUPAC name of the following compound?
    13·1 answer
  • A food web showing the flow of energy through a freshwater ecosystem is shown below. Which of the animals shown in the food web
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!