<span>One reason confidentiality would be important at a time of a medical emergency is if the patient didn't want people to know about the emergency so that they wouldn't worry. Another reason is for instance if that medical emergency was something that the patient considered embarrassing then they wouldn't want people to know.</span>
Answer:
The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.
Explanation:
Using Boyle's law

Given ,
V₁ = 3.6 L
V₂ = ?
P₁ = 1.0 atm
P₂ = 13.3 atm (From correct source)
Using above equation as:




The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.
Explanation: Saponification reaction is a reaction in which hydrolysis of fats takes place under basic conditions giving glycerol and a salt of corresponding fatty acid.
We are given a Fatty acid called as Trimyristin.
Its reaction with KOH leads to the formation of soap and is given by the equation:


The condensed structural formula for the equation is given in the image attached.
Answer:
Rydberg constant 3.3 x 10¹⁵ Hertz is equal to 1.090 x 10⁷ m⁻¹
Explanation:
Given;
Rydberg constant as 3.3 x 10¹⁵ Hz
1 Rydberg constant = 3.3 x 10¹⁵ Hz
1 Rydberg constant = 1.090 x 10⁷ m⁻¹
Therefore, Rydberg constant 3.3 x 10¹⁵ Hertz is equal to 1.090 x 10⁷ m⁻¹
Answer: a) 
b) 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
a) Mass of Ba= 66.06 g
Mass of Cl = 34.0 g
Step 1 : convert given masses into moles.
Moles of Ba =
Moles of Cl = \frac{\text{ given mass of Cl}}{\text{ molar mass of Cl}}= \frac{34g}{35.5g/mole}=0.96moles[/tex]
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Ba =
For O =
The ratio of Ba: Cl= 1:2
Hence the empirical formula is 
b) Mass of Bi= 80.38 g
Mass of O= 18.46 g
Mass of H = 1.16 g
Step 1 : convert given masses into moles.
Moles of Bi =
Moles of O=
Moles of H=
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Bi=
For O =
For H=
The ratio of Bi: O: H= 1:3: 3
Hence the empirical formula is 