Answer: Option (e) is the correct answer.
Explanation:
A bond that is formed when an electron is transferred from one atom to another results in the formation of an ionic bond.
For example, NaBr will be an ionic compound as there is transfer of electron from Na to Br.
Whereas a bond that is formed by sharing of electrons is known as a covalent bond.
For example,
will be a covalent compound as there is sharing of electron between carbon and bromine atom.
Also, when electrons are shared between the combining atoms and there is large difference in electronegativity of these atoms then partial charges develop on these atoms. As a result, it forms a polar covalent bond.
For example, in a HBr compound there is sharing of electrons between H and Br. Also, due to difference in electronegativity there will be partial positive charge on H and partial negative charge on Br.
Thus, we can conclude that out of the given options HBr is the only compound that has polar covalent bonds.
Answer : The pressure in the flask after reaction complete is, 2.4 atm
Explanation :
To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

where,
P = final pressure in the flask = ?
R = gas constant = 0.0821 L.atm/mol.K
T = temperature = 
V = volume = 4.0 L
= moles of
= 0.20 mol
= moles of
= 0.20 mol
Now put all the given values in the above expression, we get:


Thus, the pressure in the flask after reaction complete is, 2.4 atm
Answer:
Conversion of kinetic energy to potential energy (chemo mechanical energy)
In the state of rest, the rubber is a tangled mass of long chained cross-linked polymer that due to their disorderliness are in a state of increased entropy. By pulling on the polymer, the applied kinetic energy stretches the polymer into straight chains, giving them order and reducing their entropy. The stretched rubber then has energy stored in the form of chemo mechanical energy which is a form of potential energy
Conversion of the stored potential energy in the stretched to kinetic energy
By remaining in a stretched condition, the rubber is in a state of high potential energy, when the force holding the rubber in place is removed, due to the laws of thermodynamics, the polymers in the rubber curls back to their state of "random" tangled mass releasing the stored potential energy in the process and doing work such as moving items placed in the rubber's path of motion such as an object that has weight, w then takes up the kinetic energy 1/2×m×v² which can can result in the flight of the object.
Explanation:
The question is incomplete. Here is the complete question.
An atom of lead has a radius of 154 pm and the average orbitalspeed of the electron in it is about 1.8x
m/s. Calculate the least possible uncertainty in a measurement of the speed of an electron in an atom of lead. Write your answer as a percentage of the average speed, and round it to significant 2 digits.
Answer: v% = 0.21 m/s
Explanation: To calculate the uncertainty, use <u>Heisenberg's Uncertainty Principle</u>, which states that: ΔpΔx≥
where h is <u>Planck's constant</u> and it is equal to 6.626.
m²kg/s.
Since p (momentum) is p = m.v:
mΔv.Δx ≥ 
Δv = 
Given that: r = x = 1.54.
m and mass of an electron is m=9.1.
kg
Δv = 
Δv = 0.0376.
As percentage of average speed:
Δv.
.100% =
.10² = 0.021.10 = 0.21%
The least possible uncertainty in a speed of an electron is 0.21%.
<span>You are given a cough syrup that contains 5.0% ethyl alcohol, c2h5oh, by mass and its density of the solution is 0.9928 g/ml. The molarity of the alcohol in the cough syrup is 21.55.</span>