Magnet moving left to right
Answer:
a. be sure to hold expansion cards by the edge connectors
Explanation:
Removal of loose jewelry is a good safety practice. Also not touching a microchip with a magnetized screwdriver is also a good practice.
But holding expansion cards by the edge connectors is not a good practice, so it is the odd one in the question. Therefore answer option a provides the correct and best answer to the question
Answer: a. F doubled
b. F reduced by one-quarter i.e
1/4*(F)
c. 1/9*(F)
d. F increased by a factor of 4 i.e 4*F
e. F reduces 3/4*(F)
Explanation: Coulombs law states the force F of attraction/repulsion experience by two charges qA and qB is directly proportional to thier product and inversely proportional to the square of distance d between them. That is
F = k*(qA*qB)/d²
a. If qA is doubled therefore the force is doubled since they are directly proportional.
b. If qA and qB are half, that means thier new product would be qA/2)*qB/2 =qA*qB/4
Which means the product of charge is divided by 4 so the force would be divided by 4 too since they are directly proportional.
c. If d is tripped that is multiplied by 3. From the formula new d would be (3*d)²=9d² but force is inversely proportional to d² so instead of multiplying by 9 the force will be divided by 9
d. If d is cut into half that is divided by 2. The new d would be (d/2)²=d²/4. So d² is divided by 4 so the force would be multiplied by 4
e. If qA is tripled that is multiplied by 3. F would be multiplied by 3 also, if at the same time d is doubled (2*d)²= 4*d² . Force would be divided by 4 at same time. So we have,
3/4*F
If you are asking what the volume of the cube is it would be 20.3 - 17.5 ml so 2.8 ml.
Answer:
The flux through the surface of the cube is 
Solution:
As per the question:
Edge of the cube, a = 8.0 cm = 
Volume Charge density, 
Now,
To calculate the electric flux:
(1)
where
= electric flux
= permittivity of free space
Volume Charge density for the given case is given by the formula:
(2)
Volume of cube, 
Thus

Thus from eqn (2), the total charge is given by:


Now, substitute the value of 'q' in eqn (1):
