Answer:
a) r = (0.6 i- 2039 j ^ + 0.102 k⁾ m and b) vₓ = 30.0 m / s
, v_{y} = 2.04 10⁵ m / s c) v_{z} = 1.02 10⁻¹m / s
Explanation:
a) To find the position of the particle at a given moment we must know the approximation of the body, use Newton's second law to find the acceleration
Fe + Fm = m a
a = (Fe + Fm) / m
the electric force is
Fe = q E k ^
Fe = 4.25 10-4 60 k ^
Fe = 2.55 10-2 k ^
the magnetic force is
Fm = q v x B
Fm = 4.25 10⁻⁴
fm = 4.25 10⁻⁴ (-j ^ 30 4)
fm 0 = ^ -5,10 10⁻² j
We look for every component of acceleration
X axis
aₓ = 0
there is no force
Axis y
ay = -5.10 10²/5 10⁻⁵ j ^
ay = -1.02 107 j ^ / s2
z axis
az = 2.55 10⁻² / 5 10⁻⁵ k ^
az = 5.1 10² k ^ m / s²
Having the acceleration in each axis we can encocoar the position using kinematics
X axis
the initial velocity is vo = 30 m / s and an initial position xo = 0
x = vo t + ½ aₓ t₂2
x = 30 0.02 + 0
x = 0.6m
Axis y
acceleration is ay = -1.02 10⁷ m / s², a starting position of i = 1m
y = I + go t + ½ ay t²
y = 1 + 0 + ½ (-1.02 10⁷) 0.02²
y = 1 - 2.04 10³
y = -2039 m j ^
z axis
acceleration is aza = 5.1 10² m / s², the position and initial speed are zero
z = zo + v₀ t + ½ az t²
z = 0 + 0 + ½ 5.1 10² 0.02²
z = 1.02 10⁻¹ m k ^
therefore the position of the bodies is
r = (0.6 i- 2039 j ^ + 0.102 k⁾ m
b) x axis
since there is no acceleration the speed remains constant
vₓ = 30.0 m / s
Axis y
let's use the equation v = v₀ +
t
= 0 + -1.02 10⁷ 0.02
v_{y} = 2.04 10⁵ m / s
z axis
v_{z} = vo + az t
v_{z} = 0 + 5.1 10² 0.02
v_{z} = 1.02 10⁻¹m / s