answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NARA [144]
2 years ago
5

Fill in the blanks. The electrostatic force between two objects is proportional to the ____________________ of the distance ____

________________.
Physics
2 answers:
Shkiper50 [21]2 years ago
6 0
Write an equation to calculate the force between two objects if the product of their charges is 10.0 × 10-4 C. (Note: Use the variable R for the distance between the charges.)

F = 900 ÷_________
Luba_88 [7]2 years ago
6 0

Answer:

The electrostatic force between two objects is proportional to the inverse of the square of the distance between the centres of the two objects

Explanation:

According to Coulomb's law of electrostatic attraction, the electrostatic force F between two charges or objects is directly proportional to the product of the absolute values of the charges or (charges on the objects) and inversely proportional to the square of their distance of separation.

Given that q_1 and q_2 are the charges or the charges on the objects, we can break down Coulomb's statement mathematically as follows;

F\alpha q_1q_2.............(1)  F is proportional to the product of the charges.

F\alpha \frac{1}{r^2}.......................(2) F is proportional to the inverse of the square of their distance r of separation.

This is an inverse-square relationship.

You might be interested in
As shown in the figure below, Justin walks from the house to his truck on a windy day. He walks 20 m toward
juin [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The velocity is   v =0.333 \  m/s in positive x -direction

The speed is s = 0.733 \ m/s

Explanation:

From the question we are told that

The distance from the house to truck is  D =  20 m

  The distance traveled back to retrieve  wind-blown hat is  d =  15

  The distance from the wind-blown hat position too the truck is  k =  20  m

  The total time taken is  t  =  75 s

Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative

Generally Justin's displacement is mathematically represented as

      L  =  20 - 15 + 20

=>    L  =  25 \ m

Generally the average velocity is mathematically represented as

          v  =  \frac{L}{t}

=>      v = \frac{25}{75}

=>      v =0.333 \  m/s

Generally the distance covered by Justin is mathematically represented as  

         R =  D+ d + k

=>      R =  20 + 15 +20

=>     R =  55 \  m

Generally Justin's average speed over a 75 s period is mathematically represented as

            s = \frac{R}{ t}

=>         s = \frac{55}{ 75}

=>        s = 0.733 \ m/s

8 0
2 years ago
A slender uniform rod 100.00 cm long is used as a meter stick. Two parallel axes that are perpendicular to the rod are considere
Nataliya [291]

Answer:

The correct answer is D    I_{30} /I_{50} =   1.5

Explanation:

In this exercise the moment of inertia equation should be used

    I = ∫ r² dm

In addition to the parallel axis theorem

    I = I_{cm} + M D²

Where  I_{cm} is the moment of the center of mass, M is the total mass of the body and D the distance from this point to the axis of interest

Let's apply these relationships to our problem, the center of mass of a uniform rod coincides with its geometric center, in this case the rod is 1 m long, so the center of mass is in

    L = 100.00 cm (1m / 100 cm) = 1.0000 m

     x_{cm} = 50 cm = 0.50 m

Let's calculate the moment of inertia for this point, suppose the rod is on the x-axis and use the concept of linear density

    λ = M / L = dm / dx

    dm =  λ dx

Let's replace in the moment of inertia equation

    I = ∫ x² ( λ dx)

We integrate

    I =  λ x³ / 3

We evaluate between the lower limits x = -L/2 to the upper limit x = L/2

    I =  λ/3 [(L/2)³ - (-L/2)³] = lam/3  [L³/8 - (-L³ / 8)]

    I =  λ/3  L³/4

    I = 1/12  λ L³

Let's replace the linear density with its value

    I = 1/12  (M/L)  L³

    I = 1/12  M L²

Let's calculate with the given values

   I = 1/12  M 1²

   I = 1/12 M

This point is the center of mass of the rod

    Icm = I = 1/12 M  = 8.333 10-2 M

Now let's use the parallel axis theorem to calculate the moment of resection of the new axis, which is 0.30 m from one end, in this case the distance is

    D = x_{cm} - x

    D = 0.50 - 0.30

    D = 0.20  m

Let's calculate

   I_{30} =I_{cm} + M D²

   I_{30} = 1/12 M + M 0.202

   I_{30} = M (1/12 + 0.04)

   I_{30} = M 0.123

To find the relationship between the two moments of inertia, divide the quantities

  I_{30} / I_{50} = M 0.123 / (M 8.3 10-2)

   I_{30} /I_{50} = 1.48

The correct answer is d 1.5

6 0
2 years ago
A future use of space stations may be to provide hospitals for severely burned persons. it is very painful for a badly burned pe
natta225 [31]
<span>1.5 minutes per rotation. The formula for centripetal force is A = v^2/r where A = acceleration v = velocity r = radius So let's substitute the known values and solve for v. So F = v^2/r 0.98 m/s^2 = v^2/200 m 196 m^2/s^2 = v^2 14 m/s = v So we need a velocity of 14 m/s. Let's calculate how fast the station needs to spin. Its circumference is 2*pi*r, so C = 2 * 3.14159 * 200 m C = 1256.636 m And we need a velocity of 14 m/s, so 1256.636 m / 14 m/s = 89.75971429 s Rounding to 2 significant digits gives us a rotational period of 90 seconds, or 1.5 minutes.</span>
5 0
2 years ago
A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 13.0 cm , giving it a ch
Leokris [45]

a) Electric field inside the paint layer: zero

b) Electric field just outside the paint layer: -3.62\cdot 10^7 N/C

c) Electric field 8.00 cm outside the paint layer: -7.27\cdot 10^7 N/C

Explanation:

a)

We can find the electric field inside the paint layer by applying Gauss Law: the total flux of the electric field through a gaussian surface is equal to the charge contained within the surface divided by the vacuum permittivity, mathematically:

\int EdS = \frac{q}{\epsilon_0}

where

E is the electric field

dS is the element of surface

q is the charge within the gaussian surface

\epsilon_0 = 8.85\cdot 10^{-12}F/m is the vacuum permittivity

Here we want to find the electric field just inside the paint layer, so we take a sphere of radius r as Gaussian surface, where

R = 6.5 cm = 0.065 m is the radius of the plastic sphere (half the diameter)

By taking the sphere of radius r, we note that the net charge inside this sphere is zero, therefore

q=0

So we have

\int E dS=0

which means that the electric field inside the paint layer is zero.

b)

Now we want to find the electric field just outside the paint layer: therefore, we take a Gaussian sphere of radius

r=R=0.065 m

The area of the surface is

A=4\pi R^2

And since the electric field is perpendicular to the surface at any point, Gauss Law becomes

E\cdot 4\pi R^2 = \frac{q}{\epsilon_0}

The charge included within the sphere in this case is the charge on the paint layer, therefore

q=-17.0\mu C=-17.0\cdot 10^{-6}C

So, the electric field is:

E=\frac{q}{4\pi \epsilon_0 R^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.065)^2}=-3.62\cdot 10^7 N/C

where the negative sign means the direction of the field is inward, since the charge is negative.

c)

Here we want to calculate the electric field 8.00 cm outside the surface of the paint layer.

Therefore, we have to take a Gaussian sphere of radius:

r=8.00 cm + R = 8.00 + 6.50 = 14.5 cm = 0.145 m

Gauss theorem this time becomes

E\cdot 4\pi r^2 = \frac{q}{\epsilon_0}

And the charge included within the sphere is again the charge on the paint layer,

q=-17.0\mu C=-17.0\cdot 10^{-6}C

Therefore, the electric field is

E=\frac{q}{4\pi \epsilon_0 r^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.145)^2}=-7.27\cdot 10^7 N/C

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

5 0
2 years ago
hockey puck slides across the ice with an initial velocity of 7.2 m/s. It has a deceleration of 1.1 m/s2 and is traveling toward
dimulka [17.4K]

For this use the formula:

d = Vo * t - (at^2) / 2

Clearing t:

t = d/(v + 0.5*a)

Replacing:

t = 5 m / (7.2 m/s + 0.5 * (-1.1 m/s²)

Resolving:

t = 5 m / (7.2 m/s + (-0.55 m/s²)

t = 5 m / 6.65 m/s

t = 0.75 s

Result:

The time will be <u>0.75 seconds.</u>

7 0
2 years ago
Read 2 more answers
Other questions:
  • A cat falls from a table of height 1.3 m. What is the impact speed of the cat?
    15·1 answer
  • Which statement correctly describes the relationship between frequency and wavelength?
    14·2 answers
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • Hurryyyyyy When using the right-hand rule to determine the direction of the magnetic force on a charge, which part of the hand p
    14·2 answers
  • What is the displacement of a runner who is running at 0.5km/h for 3 hours due north
    12·1 answer
  • In some amazing situations, people have survived falling large distances when the surface they land on is soft enough. During a
    15·1 answer
  • 1. A2 .7-kg copper block is given an initial speed of 4.0m/s on a rough horizontal surface. Because of friction, the block final
    10·1 answer
  • The free-electron density in a copper wire is 8.5×1028 electrons/m3. The electric field in the wire is 0.0520 N/C and the temper
    11·1 answer
  • Rita has two small containers, one holding a liquid and one holding a gas. Rita transfers the substances to two larger container
    11·2 answers
  • You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!