Answer:
The temperature of the cooler substance was close to the room temperature. Therefore, the system experienced less change
Explanation:
Generally, in a closed system containing two bodies at different temperatures, there is a flow of heat energy from the body at a higher temperature to the body at a lower temperature. The effect is more significant when there is a large temperature difference between the bodies. However, if the temperature difference is small or insignificant, the change will be less.
<h3><u>Answer</u>;</h3>
A) the resting position of the wave
<h3><u>Explanation</u>;</h3>
- A wave is a transmission of a disturbance from one point which is the source to another, and this involves transfer of energy through a material medium.
- <em><u>Equilibrium refers to a state of balance between opposing forces, it is a state of balance in which opposing forces cancel one another. </u></em>
- <em><u>When wave is in rest position its called equilibrium position of a wave. When a wave travels through a material medium, the particles in the medium are disturbed from their resting, or equilibrium positions.</u></em>
Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
Answer: Dalton’s model
Explanation:
In the attached image we can see four atomic models labeled with four letters:
W represents the current and accepeted atomic model: a nucleus with an electron cloud, where the orbit and position of the electrons around the nucleus is defined by specific regions (associated with specific energy levels) where there is a greater probability of finding the electron at any given moment. It is important to note this model was improved by the works in quantum physics done by Louis de Broglie and Erwin Schrodinger.
X represents Rutherford's model (This model was proposed after Thomson's model). Ernest Rutherford conducted a series of experiments in order to corroborate Thomson's atomic model. However the results of the experiment led him to find out there is a concentration of charge in the atom's core (which was later called nucleus) surrounded by electrons. This lead to a new atomic model, in which the atom has a positive charged nucleus surrounded by negative charged particles that move similar to the orbit of the planet around the Sun.
Y represents Thomson's model, also called the <em>plum pudding</em> model. This scientific found out that atoms contain small subatomic particles with a negative charge (later called electrons). However, taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.
Z represents Bohr's model. This model was proposed by the danish physicist Niels Bohr after Rutherford's model. In fact, this model was Rutherford's model with the following addition: electrons orbit the nucleus (like planets around the sun) in specific orbits at different energy levels around the nucleus.
So, the only missing model is <u>Dalton's model</u>, which was the first atomic model: the atom represented as a solid, indestructible and indivisible mass. An idea that was already accepted by that time since the ancient Greeks.
Newton's third law tells us that for every force there is an equal and opposite force. This means that if Anna exerts a force of 20 Newtons on the box, the box exerts a force of 20 Newtons on Anna.