answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
2 years ago
5

As shown in the figure below, Justin walks from the house to his truck on a windy day. He walks 20 m toward

Physics
1 answer:
juin [17]2 years ago
8 0

Complete Question

The complete question is shown on the first uploaded image

Answer:

The velocity is   v =0.333 \  m/s in positive x -direction

The speed is s = 0.733 \ m/s

Explanation:

From the question we are told that

The distance from the house to truck is  D =  20 m

  The distance traveled back to retrieve  wind-blown hat is  d =  15

  The distance from the wind-blown hat position too the truck is  k =  20  m

  The total time taken is  t  =  75 s

Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative

Generally Justin's displacement is mathematically represented as

      L  =  20 - 15 + 20

=>    L  =  25 \ m

Generally the average velocity is mathematically represented as

          v  =  \frac{L}{t}

=>      v = \frac{25}{75}

=>      v =0.333 \  m/s

Generally the distance covered by Justin is mathematically represented as  

         R =  D+ d + k

=>      R =  20 + 15 +20

=>     R =  55 \  m

Generally Justin's average speed over a 75 s period is mathematically represented as

            s = \frac{R}{ t}

=>         s = \frac{55}{ 75}

=>        s = 0.733 \ m/s

You might be interested in
What volume in milliliters will 0.00922 g of h2 gas occupy at stp?
Nadusha1986 [10]
Assuming that this gas is in ideal state, we can use the relation that for every 1 mol of an ideal gas it would have a volume of 22.4 L. But before using this, relation we need to convert the number of grams of H2 into moles by using the molar mass of 2.02 g/mol.

moles H2 = 0.00922 g ( 1 mol / 2.02 g ) = 0.005 mol H2

Volume H2 at STP = 0.005 mol H2 ( 22.4 L / 1 mol ) = 0.102 L of H2
4 0
2 years ago
In very cold weather, a significant mechanism for heat loss by the human body is energy expended in warming the air taken into t
Pie

Answer:

A) Q_a=74256\ J

B) Q=93562560\ J

Explanation:

Given:

  • temperature of air, T_a=-19+273=254\ K
  • temperature of lungs, T_l=37+273=310\ K
  • specific Heat exchanged from the lungs , c_l=0.47\ J.kg^{-1}.K^{-1}
  • specific heat of air, c_a=1020\ J.kg^{-1}.K^{-1}
  • mass of 1 L air, m'=1.3\ kg
  • breath rate, b=21\ breath.min^{-1}

A)

Now,

amount of heat needed to warm the air of lungs to the body temperature:

Q_a=m'.c_a.\Delta T

Q_a=1.3\times1020\times (310-254)

Q_a=74256\ J

B)

Amount of heat lost per hour:

<u>No. of breaths per hour:</u>

B=b.60

B=21\times 60

B=1260

<u>Now the total loss of energy in 1 hr.:</u>

Q=Q_a.B

Q=74256\times 1260

Q=93562560\ J

7 0
2 years ago
The human eye can respond to as little as 10^−18 J of light energy. For a wavelength at the peak of visual sensitivity, 550 nm,
Bumek [7]
<span>The key equation is going to come from Mr Planck: E=h \nu

Where h is Plancks constant; and ν is the frequency. This equation gives you the energy per photon at a given frequency. Alas, you're given wavelength, but that's easy enough to convert to frequency given the following equation:

c= lambda / nu

where c is the speed of light; λ (lambda) is the wavelength; and ν is again frequency. As soon as you know the energy of a photon with a wavelength of 550nm, you should know how many photons you would require to accumulate 10^-18J. Be careful with your units.</span>
7 0
2 years ago
Read 2 more answers
The Bernoulli equation is valid for steady, inviscid, incompressible flows with a constant acceleration of gravity. Consider flo
irina1246 [14]

Answer:

p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant

Explanation:

first write the newtons second law:

F_{s}=δma_{s}

Applying bernoulli,s equation as follows:

∑δp+\frac{1}{2} ρδV^{2} +δγz=0\\

Where, δp is the pressure change across the streamline and V is the fluid particle velocity

substitute ρg for {tex]γ[/tex] and g_{0}-cz for g

dp+d(\frac{1}{2}V^{2}+ρ(g_{0}-cz)dz=0

integrating the above equation using limits 1 and 2.

\int\limits^2_1  \, dp +\int\limits^2_1 {(\frac{1}{2}ρV^{2} )} \, +ρ \int\limits^2_1 {(g_{0}-cz )} \,dz=0\\p_{1}^{2}+\frac{1}{2}ρ(V^{2})_{1}^{2}+ρg_{0}z_{1}^{2}-ρc(\frac{z^{2}}{2})_{1}^{2}=0\\p_{2}-p_{1}+\frac{1}{2}ρ(V^{2}_{2}-V^{2}_{1})+ρg_{0}(z_{2}-z_{1})-\frac{1}{2}ρc(z^{2}_{2}-z^{2}_{1})=0\\p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant

there the bernoulli equation for this flow is p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant

note: ρ=density(ρ) in some parts and change(δ) in other parts of this equation. it just doesn't show up as that in formular

4 0
2 years ago
Hope you can answer this: A Student Visits A Farm And Makes These Notes In Her Journal.
Strike441 [17]

Answer:

Common Sense

Explanation:

The chick has probably seen other chicks get caught by the Hawk and knows not to go near, or saw a giant bird flying straight towards it and used common sense to identify it as danger and run away. Although if this is for a test or a grade or something, please do not use the answer, it is most likely incorrect. This is honestly my best answer.

8 0
2 years ago
Other questions:
  • A cave explorer travels 3.0 m eastward, then 2.5 m northward, and finally 15.0 m westward. use the graphical method to find the
    8·2 answers
  • HURRY UP PLZZZ Two identical waves are traveling toward each other in the same medium. One has a positive amplitude, meaning tha
    14·2 answers
  • A student measures the speed of a rolling ball three times. She adds the measurements and divides by 3.What quantity did the stu
    5·2 answers
  • A circular saw blade with radius 0.175 m starts from rest and turns in a vertical plane with a constant angular acceleration of
    12·1 answer
  • A sinusoidally-varying voltage V(t)=V0sin(2pift) with amplitude V0 = 10 V and frequency f = 100 Hz is impressed across the plate
    7·1 answer
  • Calculate the force of Earth’s gravity on a spacecraft 2.00 Earth radii above the Earth’s surface (That would be 3.00 Earth radi
    5·1 answer
  • A student wants to verify a claim that for a given change in momentum, the average applied force decreases as the time interval
    12·1 answer
  • the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
    14·1 answer
  • A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s. By changing the position of her arms, the skater decreases he
    6·1 answer
  • Which type of speed does the following scenario depict?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!