answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
2 years ago
13

in a race, Usain Bolt accelerates at 1.99m/s^2 for the first 60.0m, then decelerates at -0.266m/s^2 for the final 40.0m. what wa

s his final velocity? (Unit = m/s)​
Physics
1 answer:
Paul [167]2 years ago
6 0

Answer:

14.7 m/s

Explanation:

During the first phase, given:

Δx = 60.0 m

v₀ = 0 m/s

a = 1.99 ms²

Find: v

v² = v₀² + 2aΔx

v² = (0 m/s)² + 2 (1.99 m/s²) (60.0 m)

v = 15.5 m/s

During the second phase, given:

Δx = 40.0 m

v₀ = 15.5 m/s

a = -0.266 ms²

Find: v

v² = v₀² + 2aΔx

v² = (15.5 m/s)² + 2 (-0.266 m/s²) (40.0 m)

v = 14.7 m/s

You might be interested in
A weightlifter lifts a 13.0-kg barbel from the ground an moves it a distance of 1.3 meters. What is the work se does on the barb
marta [7]

The work done on the barbell is -165.62 Nm.

Explanation:

Work done on any object is the measure of force required to move that object from one position to another. So it is determined by the product of force acting on the object with the displacement of the object.

In the present problem, the displacement of the object on acting of force is given as 1.3 m. And the weight of the object which is a barbel is given as 13 kg. As the work is to lift the object from the ground, so the acceleration due to gravity will be acting on the object. In other words, the force applied on the object to lift it should be in opposite direction to the acting of acceleration due to gravity.

Thus, Force = - Mass * Acceleration due to gravity = - 13 * 9.8 =-127.4 N

Now, the force is -127.4 N and the displacement is 1.3 m.

So, Work done = F*d

Work done = -127.4* 1.3 = -165.62 Nm

So, the work done on the barbell is -165.62 Nm.

6 0
2 years ago
A couch is pushed with a horizontal force of 80 N and moves the couch a
Lapatulllka [165]

Answer:

400 J

Explanation:

Work = force × distance

W = (80 N) (5 m)

W = 400 J

5 0
2 years ago
Read 2 more answers
A solid cylindrical bar conducts heat at a rate of 25 W from a hot to a cold reservoir under steady state conditions. If both th
expeople1 [14]

Answer:

Using the new cylinder the heat rate between the reservoirs would be 50 W

Explanation:

  1. Conduction could be described by the Law of Fourierin the form: Q=kA\frac{T_1-T_2}{L} where Q is the rate of heat transferred  by conduction, k is the thermal conductivity of the material, T_1 and T_2 are the temperatures of each heat deposit, A is the cross area to the flow of heat, and {L} is the distance that the flow of heat has to go.
  2. For the original cylinder the Fourier's law would be: kA_1\frac{T_1-T_2}{L_1}=25W, and if A_1=\frac{\pi D_{1}^{2}}{4}, then the expression would be:k\frac{\pi D_1^{2}}{4} \frac{T_1-T_2}{L_1}=25W where D_1 is the diameter of the original cylinder, and {L_1} is the length of the original cylinder.
  3. For the new cylinder, in the same fashion that for the first, Fourier's Law would be: Q_2=k\frac{\pi D_2^2}{4}\frac{T_1-T_2}{L_2},where Q_2 is the heat rate in the second case, D_2 and {L_2 are the new diameter and length.
  4. But, D_2=2D_1 and L_2=2L_1, substituting in the expression for Q_2: Q_2=k\frac{\pi (2D_1)^2}{4}\frac{T_1-T_2}{2L_1}.
  5. Rearranging: Q_2=\frac{2^2}{2}(k\frac{\pi D_1^2}{4}\frac{T_1-T_2}{L_1}).
  6. In the last declaration of  Q_2, it could be noted that the expressión inside the parenthesis is actually  Q_1, then:  Q_2=\frac{2^2}{2}(25W)=50W.
  7. <u>It should be noted, that the temperatures in the hot and cold reservoirs never change.</u>
7 0
2 years ago
A 0.305 kg book rests at an angle against one side of a bookshelf. The magnitude and direction of the total force exerted on the
tankabanditka [31]

Answer

given,

F_L= 1.52\ N

\theta_L= 31^0

mass of book = 0.305 Kg

so, from the diagram attached  below

F_L cos {\theta_L} + F_b sin {\theta_b} = m g

1.52 times cos {31^0} + F_b sin {\theta_b} = 0.305 \times 9.8

F_b sin {\theta_b} = 2.989 -1.303

F_b sin {\theta_b} = 1.686

computing horizontal component

F_b cos {\theta_b} = F_L sin {\theta_L}

cos {\theta_b} = \dfrac{F_L sin {\theta_L}}{F_b}

cos {\theta_b} = \dfrac{1.52 \times sin {31^0}}{1.686}

cos {\theta_b} = 0.464

θ = 62.35°

5 0
2 years ago
a 4357 kg roller coaster car starts from rest at the top of a 36.5 m high track. determine the speed of the car at the top of a
andrey2020 [161]
The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.
4 0
2 years ago
Other questions:
  • What differentiates baseline activities from health-enhancing activities?
    15·2 answers
  • A skydiver deploys his parachute when he is 1000m directly above his desired landing spot. He then falls through the air at a st
    7·1 answer
  • Describe a well-known hypothesis that was discarded because it was found to be untrue.earth-centered model of the universe. the
    6·1 answer
  • One object has twice as much mass as another object. The first object also has twice as much a velocity. b gravitational acceler
    14·1 answer
  • A 0.500-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wa
    5·1 answer
  • On a day when the barometer reads 75.23 cm, a reaction vessel holds 250 mL of ideal gas at 20 celsius. An oil manometer ( rho= 8
    12·1 answer
  • A force of 16.88 n is applied tangentially to a wheel of radius 0.340 m and causes an angular acceleration of 1.20 rad/s2. What
    15·1 answer
  • cicadas produce a sound that has a frequency of 123 Hz. what is the wavelength of this sound in the air? the speed of sound in a
    15·1 answer
  • The natural tendency is for entropy to___ over time.
    6·2 answers
  • Modifiable strength improvement factors include all of the following except...??
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!