The work done on the barbell is -165.62 Nm.
Explanation:
Work done on any object is the measure of force required to move that object from one position to another. So it is determined by the product of force acting on the object with the displacement of the object.
In the present problem, the displacement of the object on acting of force is given as 1.3 m. And the weight of the object which is a barbel is given as 13 kg. As the work is to lift the object from the ground, so the acceleration due to gravity will be acting on the object. In other words, the force applied on the object to lift it should be in opposite direction to the acting of acceleration due to gravity.
Thus, 
Now, the force is -127.4 N and the displacement is 1.3 m.
So, 

So, the work done on the barbell is -165.62 Nm.
Answer:
Using the new cylinder the heat rate between the reservoirs would be 50 W
Explanation:
- Conduction could be described by the Law of Fourierin the form:
where
is the rate of heat transferred by conduction,
is the thermal conductivity of the material,
and
are the temperatures of each heat deposit,
is the cross area to the flow of heat, and
is the distance that the flow of heat has to go. - For the original cylinder the Fourier's law would be:
, and if
, then the expression would be:
where
is the diameter of the original cylinder, and
is the length of the original cylinder. - For the new cylinder, in the same fashion that for the first, Fourier's Law would be:
,where
is the heat rate in the second case,
and
are the new diameter and length. - But,
and
, substituting in the expression for
:
. - Rearranging:
. - In the last declaration of
, it could be noted that the expressión inside the parenthesis is actually
, then:
. - <u>It should be noted, that the temperatures in the hot and cold reservoirs never change.</u>
Answer
given,


mass of book = 0.305 Kg
so, from the diagram attached below




computing horizontal component




θ = 62.35°
The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.