Answer:
a. be sure to hold expansion cards by the edge connectors
Explanation:
Removal of loose jewelry is a good safety practice. Also not touching a microchip with a magnetized screwdriver is also a good practice.
But holding expansion cards by the edge connectors is not a good practice, so it is the odd one in the question. Therefore answer option a provides the correct and best answer to the question
Weight = (mass) x (gravity)
Acceleration of gravity on Earth = 9.8 m/s²
Weight on Earth = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²): Mass = (weight) / (9.8 m/s²)
Mass = (650 N) / (9.8 m/s²)
Mass = 66.33 kg (rounded)
Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>
<h3><u>Answer</u>;</h3>
= 22°
<h3><u>Explanation</u>;</h3>
- According to Snell's law, the ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant. The constant value is called the refractive index of the second medium with respect to the first.
- Therefore; Sin i/Sin r = η
In this case; Angle of incidence = 90° -60° =30°, angle of refraction =? and η = 1.33
Thus;
Sin 30 / Sin r = 1.33
Sin r = Sin 30°/1.33
= 0.3759
r = Sin^-1 0.3759
= 22.08
<u>≈ 22°</u>
Answer:
(b) 10 Wb
Explanation:
Given;
angle of inclination of magnetic field, θ = 30°
initial area of the plane, A₁ = 1 m²
initial magnetic flux through the plane, Φ₁ = 5.0 Wb
Magnetic flux is given as;
Φ = BACosθ
where;
B is the strength of magnetic field
A is the area of the plane
θ is the angle of inclination
Φ₁ = BA₁Cosθ
5 = B(1 x cos30)
B = 5/(cos30)
B = 5.7735 T
Now calculate the magnetic flux through a 2.0 m² portion of the same plane
Φ₂ = BA₂Cosθ
Φ₂ = 5.7735 x 2 x cos30
Φ₂ = 10 Wb
Therefore, the magnetic flux through a 2.0 m² portion of the same plane is is 10 Wb.
Option "b"