answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
2 years ago
9

Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm sli

t. On the other side of the slit is a white screen. When the red laser is turned on, it creates a diffraction pattern on the screen.
a. The distance y3,red from the center of the pattern to the location of the third diffraction minimum of the red laser is 4.05 cm. How far L is the screen from the slit? Express this distance L in meters to three significant figures.
b. With both lasers turned on, the screen shows two overlapping diffraction patterns. The central maxima of the two patterns are at the same position. What is the distance Δy between the third minimum in the diffraction pattern of the red laser (from Part A) and the nearest minimum in the diffraction pattern of the green laser?
Physics
1 answer:
Orlov [11]2 years ago
8 0

Answer:

a.3.20m

b.0.45cm

Explanation:

a. Equation for minima is defined as: sin \theta=\frac{m\lambda}{\alpha}

Given m=3,\lambda=6.33\times 10^-^7 and \alpha=0.00015:

#Substitute our variable values in the minima equation to obtain \theta:

\theta=sin^-^1 (\frac{3\times 6.33\times 10^-^7}{0.00015})\\\\\theta=0.01266rad

#draw a triangle to find the relationship between \theta, y \ and L.

tan(\theta)=y/L               #where y=4.05cm

L=y/tan(\theta)=3.20

Hence the screen is 3.20m from the split.

b.  To find the closest minima for green(the fourth min will give you the smallest distance)

#Like with a above, the minima equation will be defined as:

sin \theta=\frac{m\lambda}{\alpha}, where m=4 given that it's the minima with the smallest distance.

sin \theta=\frac{4\lambda}{\alpha}\\\theta=sin^-^1 (\frac{4\times 6.33\times 10^-^7}{0.00015})\\\\\theta=0.01688rad

#we then use tan(\theta)=y/L to calculate L=4.5cm

Then from the equation subtract y_3 from y:

4.50cm-4.05cm=0.45cm

Hence, the distance \bigtriangleup y is 0.45cm

You might be interested in
Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
KIM [24]

Answer:

The velocity is v = 4.76 \ m/s

Explanation:

From the question we are told that

   The first distance is   d_1  =  4.0 \ km  =  4000 \ m

   The  first speed  is  v_1 =  5.0 \ m/s

    The  second distance is  d_2  =  1.0 \ km  =  1000 \ m

    The  second speed  is  v_2  =  4.0 \ m/s

Generally the time taken for first distance is  

      t_1 =  \frac{d_1 }{v_1 }

        t_1 =  \frac{4000}{5}

       t_1 =  800 \ s

The time taken for second  distance is

           t_1 =  \frac{d_2 }{v_2 }

        t_1 =  \frac{1000}{4}

       t_1 =  250 \ s

The total time is mathematically represented as

     t =  t_1 + t_2

=>   t =  800 + 250

=>    t =  1050 \ s

Generally the constant velocity that would let her finish at the same time is mathematically represented as

      v =  \frac{d_1 + d_2}{t }

=>    v =  \frac{4000 + 1000}{1050 }

=>    v = 4.76 \ m/s

7 0
2 years ago
A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
olya-2409 [2.1K]

Explanation:

When Michelson-Morley apparatus is turned through 90^{o} then position of two mirrors will be changed. The resultant path difference will be as follows.

      \frac{lv^{2}}{\lambda c^{2}} - (-\frac{lv^{2}}{\lambda c^{2}}) = \frac{2lv^{2}}{\lambda c^{2}}

Formula for change in fringe shift is as follows.

          n = \frac{2lv^{2}}{\lambda c^{2}}

       v^{2} = \frac{n \lambda c^{2}}{2l}

             v = \sqrt{\frac{n \lambda c^{2}}{2l}}

According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.

             l = 11 m

    \lambda = 5.9 \times 10^{-7} m

           c = 3.0 \times 10^{8} m/s

Hence, putting the given values into the above formula as follows.

            v = \sqrt{\frac{n \lambda c^{2}}{2l}}

               = \sqrt{\frac{1 \times (5.9 \times 10^{-7} m) \times (3.0 \times 10^{8})^{2}}{2 \times 11 m}}

               = 2.41363 \times 10^{9} m/s

Thus, we can conclude that velocity deduced is 2.41363 \times 10^{9} m/s.

3 0
2 years ago
Disturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly h
Bezzdna [24]
:<span>  </span><span>30.50 km/h = 30.50^3 m / 3600s = 8.47 m/s 

At the top of the circle the centripetal force (mv²/R) comes from the car's weight (mg) 

So, the net downward force from the car (Fn) = (weight - centripetal force) .. and by reaction this is the upward force provided by the road .. 

Fn = mg - mv²/R 
Fn = m(g - v²/R) .. .. 1800kg (9.80 - 8.47²/20.20) .. .. .. ►Fn = 11 247 N (upwards) 
(b) 
When the car's speed is such that all the weight is needed for the centripetal force .. then the net downward force (Fn), and the reaction from the road, becomes zero. 

ie .. mg = mv²/R .. .. v² = Rg .. .. 20.20m x 9.80 = 198.0(m/s)² 

►v = √198 = 14.0 m/s</span>
3 0
2 years ago
A beam of electrons is sent horizontally down the axis of a tube to strike a fluorescent screen at the end of the tube. On the w
slamgirl [31]

Answer:

The answer is 3.

Explanation:

The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.

So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.

I hope this answer helps.

4 0
2 years ago
Suzette had prepared the graph below to add to her lab
Charra [1.4K]

Answer:

A title

Explanation:

Because this is middle school.

4 0
2 years ago
Read 2 more answers
Other questions:
  • A 75 kg skydiver can be modeled as a rectangular "box" with dimensions 20 cm * 40 cm * 180 cm. what is his terminal speed if he
    9·1 answer
  • Which of the following diagrams involves a virtual image ?
    9·1 answer
  • A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
    9·2 answers
  • The table below shows data of sprints of animals that traveled 75 meters. At each distance marker, the animals' times were recor
    6·2 answers
  • A tank of water is in the shape of a cone (assume the ""point"" of the cone is pointing downwards) and is leaking water at a rat
    10·1 answer
  • A 161 lb block travels down a 30° inclined plane with initial velocity of 10 ft/s. If the coefficient of friction is 0.2, the to
    5·1 answer
  • An 80.0-kg man jumps from a height of 2.50 m onto a platform mounted on springs. As the springs compress, he pushes the platform
    10·1 answer
  • A 1.2-m radius cylindrical region contains a uniform electric field along the cylinder axis. It is increasing uniformly with tim
    11·1 answer
  • José and Laurel measured the length of a stick's shadow during the day. Without knowing the length of the stick, which of their
    10·1 answer
  • In the demolition of an old building, a 1,300 kg wrecking ball hits the building at 1.07 m/s2. Calculate the amount of force at
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!