Answer:
r= 2.17 m
Explanation:
Conceptual Analysis:
The electric field at a distance r from a charge line of infinite length and constant charge per unit length is calculated as follows:
E= 2k*(λ/r) Formula (1)
Where:
E: electric field .( N/C)
k: Coulomb electric constant. (N*m²/C²)
λ: linear charge density. (C/m)
r : distance from the charge line to the surface where E calculates (m)
Known data
E= 2.9 N/C
λ = 3.5*10⁻¹⁰ C/m
k= 8.99 *10⁹ N*m²/C²
Problem development
We replace data in the formula (1):
E= 2*k*(λ/r)
2.9= 2*8.99 *10⁹*(3.5*10⁻¹⁰/r)
r =( 2*8.99 *10⁹*3.5*10⁻¹⁰) / (2.9)
r= 2.17 m
Answer:
Total number of electrons

electrons removed from each sphere

Fraction of electrons transferred is given as

Explanation:
As we know that moles is defined as



so number of atoms of Al in each sphere is given as


Now number of electrons in each atom is given as
atomic number = number of electrons in each atom = 13
total number of electrons in each sphere is


Also we know that force of attraction between them is given as



now we have




Fraction of electrons transferred is given as


The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is
the vertical velocity.
In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity

, where

- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration

directed downwards, and with initial velocity

. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height.
Answer: -2 km
Explanation:
If we imagine Jin's movement to be the hypothenuse of a right triangle, then the southern component of Jin's movement corresponds to the side of the triangle opposite to the angle of 30 degrees. Therefore, the magnitude of this southern component is given by
However, the angle of 30 degrees is south of east: this means that the direction of this southern component is south, and since we generally take north as positive direction, we must add a negative sign, so the correct answer is
-2 km