In-situ leaching or solution mining offers the least ground disruptive type of mining and waste. This type of mining only dissolves the uranium where it is under the ground then pump up to the ground and further processed through milling.
I'm assuming you want the first law of thermodynamics.
The First Law of Thermodynamics states that heat is a form of energy and cannot be created or destroyed. It can, however, be transferred from one location to another and can be converted into other forms of energy.
S=56, u=0, v=33, a=?, t=3.4
v=u+at
33=3.4 a
a = 9.7m/s^2
Answer:
M = 0.730*m
V = 0.663*v
Explanation:
Data Given:

Conservation of Momentum:

Energy Balance:

Substitute Eq 2 into Eq 1

Using Eq 1

Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.