To solve this problem, we must imagine that Jim’s initial
position, the position of the rock, and Jim’s final position all connects to
form a triangle. Now we can imagine that the triangle is a right triangle with
the 90° angle on the initial position.
The angle of 30° is directly opposite to the length of his
total stride while the width of the river is the side adjacent to the angle.
Therefore can use the tan function to solve for the width of the river:
tan θ = opposite side / adjacent side
tan 30 = total stride distance / width of river
where total stride distance = 65 * 0.8 = 52 m
width of river = 52 m / tan 30
<span>width of river = 90.07 m</span>
A cold acetic acid solution is used to wash the residue of
the reagent in preparation of an aldol condensation product after vacuum
filtration. The main reason in washing
with the acetic acid rinse is to neutralize any sodium hydroxide.
At the rear.
PWC stands for personal watercraft, and it is a small powerboat. The main components of a PWC are the hull (body of the boat), deck (surface where people walk/stand), throttle (controls speed), steering nozzle and water intake.
The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer:
remains the same, but the apparent brightness is decreased by a factor of four.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).
The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.
The apparent brightness of a star is measured in watts per square meter.
If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).
Some of the examples of stars are;
- Canopus.
- Sun (closest to the Earth)
- Betelgeuse.
- Antares.
- Vega.