answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
2 years ago
9

The pH of pure water at 25°C is 7.0. The enthalpy change of the autoionization of water is +55.89 kJ/mol. What is the pH of pure

water at 100°C?
Physics
1 answer:
Sergeu [11.5K]2 years ago
4 0

Answer:

6.14

Explanation:

If the pH falls as temperature increases, this does not mean that water becomes more acidic at higher temperatures. A solution is acidic if there is an excess of hydrogen ions over hydroxide ions (i.e., pH < pOH). In the case of pure water, there are always the same concentration of hydrogen ions and hydroxide ions and hence, the water is still neutral (pH = pOH) - even if its pH changes.

The problem is that we are all familiar with 7 being the pH of pure water, that anything else feels really strange. Remember that to calculate the neutral value of pH from  Kw . If that changes, then the neutral value for pH changes as well. At 100°C, the pH of pure water is 6.14, which is "neutral" on the pH scale at this higher temperature. A solution with a pH of 7 at this temperature is slightly alkaline because its pH is a bit higher than the neutral value of 6.14.

You might be interested in
If there is a potential difference v between the metal and the detector, what is the minimum energy emin that an electron must h
beks73 [17]
The electrical potential energy of a charge q located at a point at potential V is given by
U=qV
Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be
\Delta U = q (V_2 -V_1)=q \Delta V

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to 
\Delta U = e V
Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector:
E_{min} = \Delta U = eV
5 0
2 years ago
You are a particle physicist at the Large Hadron Collider who is tasked with designing an apparatus to separate annihilation pro
JulijaS [17]

Find solution in the attachments

4 0
2 years ago
A stock person at the local grocery store has a job consisting of the following five segments:
vaieri [72.5K]

Answer:

B

Explanation:

Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.

In 1 and 2 work done is positive

6 0
2 years ago
Two small diameter, 10gm dielectric balls can slide freely on a vertical channel each carry a negative charge of 1microcoulomb.
dimulka [17.4K]

Answer:

The distance of separation is d = 0.092 \ m

Explanation:

The mass of the each ball is  m= 10 g  =  0.01 \ kg

 The negative charge on each ball is q_1 =q_2=q =  1 \mu C  =  1 *10^{-6} \ C

Now we are told that the lower ball is  restrained from moving this implies that the net force acting on it is  zero

Hence the gravitational force acting on the lower ball is equivalent to the electrostatic force i.e

          F =  \frac{kq_1 * q_2}{d}

=>       m* g  =  \frac{kq_1 * q_2}{d}

here k the the coulomb's  constant with a value  k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.

So  

      0.01 * 9.8  =  \frac{ 9*10^9 *[1*10^{-6} * 1*10^{-6}]}{d}

            d = 0.092 \ m

5 0
2 years ago
A 2200 kg truck has put its front bumper against the rear bumper of a 2400 kg SUV to give it a push. With the engine at full pow
leonid [27]

Answer:

a) The maximum possible acceleration the truck can give the SUV is 7.5 meters per second squared

b) The force of the SUV's bumper on the truck's bumper is 18000 newtons

Explanation:

a) By Newton's second law we can find the relation between force and acceleration of the SUV:

F=ma

With F the maximum force the truck applies to the SUV, m the mass of the SUV and a the acceleration of the SUV; solving for a:

a=\frac{F}{m}=\frac{18000}{2400}\approx7.5\,\frac{m}{s^{2}}

b) Because at this acceleration the truck's bumper makes a force of 18000 N on the SUV’s bumper by Third Newton’s law the force of the SUV’s bumper on the truck’s bumper is 18000 N too because they are action-reaction force pairs.

7 0
2 years ago
Other questions:
  • Bob has a brother, jim, who has a daughter named bertha. Bertha's daughter, jennifer, has a sister named penny. which of the fol
    5·2 answers
  • In this lab, you will use a dynamics track to generate collisions between two carts. If momentum is conserved, what variable cha
    5·2 answers
  • Bill has a mass of 85 kg and is skating west. He increases his speed from 3 m/s to 5 m/s by applying a force for 3 seconds. What
    11·1 answer
  • A spring stretches 0.018 m when a 2.8-kg object is suspendedfrom its end. How much mass should be attached to this spring sothat
    9·1 answer
  • Weddell seals make holes in sea ice so that they can swim down to forage on the ocean floor below. Measurements for one seal sho
    11·1 answer
  • Delicate measurements indicate that the Earth has an electric field surrounding it, similar to that around a positively charged
    9·1 answer
  • A uniform Rectangular Parallelepiped of mass m and edges a, b, and c is rotating with the constant angular velocity ω around an
    6·1 answer
  • You decide to work at a heart rate of 150 instead of 120. What area of F.I.T.T. did you change?
    12·1 answer
  • Suppose you are talking by interplanetary telephone to your friend, who lives on the Moon. He tells you that he has just won a n
    11·1 answer
  • A dog is 60m away while moving at constant velocity of 10m/s towards you. Where is the dog after 4 seconds?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!