Answer:
Explanation:
GIVEN DATA:
Distance between keisha and her friend 8.3 m
angle made by keisha toside building 30 degree
height of her friend monique is 1.5 m
from the figure



therefore
height of keisha is 
= 14.376 + 1.5

therefore option c is correct
Answer:
See the explanation below
Explanation:
To better understand this problem, a cylinder sketch is attached before and after the cut, we see that after the cut, the shape of this resembles that of a right triangle.
We can find, the centroid in the xy plane, knowing that the centroid for a triangle is located a third of its base.
In the z axis there is no displacement of the centroid.
First of all, we can find the mass of the person, since we know his weight W:

And so

We know for Newton's second law that the resultant of the forces acting on the person must be equal to the product between the mass and the acceleration a of the person itself:

There are only two forces acting on the person: his weight W (downward) and the vincular reaction Rv of the floor against the body (upward). So we can rewrite the previous equation as

We know the acceleration of the system,

(upward, so with same sign of Rv), so we can solve to find the value of Rv, the normal force exerted by the elevator's floor on the person:
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg.
F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N
Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m
Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356 N
Ratio = 0.356 N/589.18 N
<em>Ratio = 6.04</em>