Answer:
99.95%
Explanation:
A double pulsar system named PSR J0737-3039A/B in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.
A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.
The correct answer would be that destructive interference is happening. In this interference, the crest of a wave meets a trough of another wave resulting to an amplitude that is lower. The opposite is called the constructive interference. Hope this answers the question.
Given:
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
To find:
Time required by ball to reach the receiver = ?
Formula used:
speed = 
Solution:
The speed of the ball is given by,
speed = 
Thus,
Time = 
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
Time = 4.12 second
Hence, ball reaches the receiver in 4.12 second.
Answer: 10 and 35 degrees
Explanation: Localizers width below 10 degree and 35 degree signal arc is unreliable and considered unusable for navigation and as a result, aircrafts may loose alignment
Since the law of gravitation is an inverse square law if you
quadruple the radius the f will drop by a factor of 16 SO the object would
weigh 200/16 = 12.5N
In other words, as the distance, or radius, quadruples the
weight becomes 1/16 of the original weight. Just plug in 4 for r and when you
square it you get 16. The numerator is 1 so that is how the weight becomes
1/16.