answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikdorinn [45]
2 years ago
5

A frog hops 5m east and 2m north. What is the magnitude of the frogs total displacement in m?

Physics
1 answer:
TiliK225 [7]2 years ago
7 0

As per the question a frog jumps 5 m towards east.

Frog again jumps 2 m north.

Let the displacement along east is denoted by vector A and the displacement towards north is denoted as vector B.

Hence magnitude of A = 5 m

           Magnitude of B = 2 m

We are asked to calculate the total displacement.

Here the angle between them is 90 degree as A is towards east and B is towards north.

As per parallelogram law of vector addition,the magnitude of total displacement [R] will be-

                            R=\sqrt{ A^{2} +B^{2}+2AB\cos\theta}

                            =\sqrt{ 5^{2}+ 2^{2}+2*5*2 cos 90}

                            =\sqrt{25+4+0} m  [cos90= 0]

                            =\sqrt{29} m

                            = 5.38516 m   [ans]

                     


You might be interested in
Keisha looks out the window from a tall building at her friend Monique standing on the ground, 8.3 m away from the side of the b
Salsk061 [2.6K]

Answer:

Explanation:

GIVEN DATA:

Distance between keisha and her friend 8.3 m

angle made by keisha toside building 30 degree

height of her friend monique is 1.5 m

from the figure

\Delta ACB

tan 30 = \frac{8.3}{h}

h= \frac{8.3}{tan 30} = 14.376 m

therefore

height of keisha is = h  + 1.5 m

                               = 14.376 + 1.5

= 15.876 \simeq 16 m

therefore option c is correct

5 0
2 years ago
A uniform cylindrical steel wire (density: 7.8 x 103 kg/m3), 58.0 cm long and 1.34 mm in diameter, is fixed at both ends. To wha
lbvjy [14]

Answer:

T= 354.65 N

Explanation:

Given that

ρ= 7800 kg/m³

L= 58 cm

d=1.34 mm

f= 311 Hz

T= Tension

Speed of wave ,V

V = f λ      

V = f L

V= 311 x 0.58 m/s

V=180.38 m/s

Area of cross sectional

A= πr² mm²

A= 3.14 x 0.67² mm²

A=1.41 mm²

Mass = Density x Volume

m=7800\times 1.41\times 10^{-6}\ kg/m

m=0.0109 kg/m

Tension ,T

T=m V^2

T= 0.0109 x 180.38² N

T= 354.65 N

     

3 0
2 years ago
A cylinder is sliced in half along its diagonal. Determine the location of the center of mass and the inertia properties relativ
Black_prince [1.1K]

Answer:

See the explanation below

Explanation:

To better understand this problem, a cylinder sketch is attached before and after the cut, we see that after the cut, the shape of this resembles that of a right triangle.

We can find, the centroid in the xy plane, knowing that the centroid for a triangle is located a third of its base.

In the z axis there is no displacement of the centroid.

3 0
2 years ago
A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal
creativ13 [48]
First of all, we can find the mass of the person, since we know his weight W:
W=mg=0.70 kN=700 N
And so
m= \frac{W}{g}= \frac{700 N}{9.81 m/s^2}=71.4 kg

We know for Newton's second law that the resultant of the forces acting on the person must be equal to the product between the mass and the acceleration a of the person itself:
\sum F =  ma
There are only two forces acting on the person: his weight W (downward) and the vincular reaction Rv of the floor against the body (upward). So we can rewrite the previous equation as
R_v -W = ma
We know the acceleration of the system, a=1.5 m/s^2 (upward, so with same sign of Rv), so we can solve to find the value of Rv, the normal force exerted by the elevator's floor on the person:
R_v = ma+W=(71.4 kg)(1.5 m/s^2)+700 N =807N
8 0
2 years ago
Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
Pachacha [2.7K]
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg. 

F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N

Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m

Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356  N

Ratio = 0.356  N/589.18 N
<em>Ratio = 6.04</em>
5 0
2 years ago
Read 2 more answers
Other questions:
  • The air in tires can support a car because gases __________.
    5·1 answer
  • A varying force is given by F=Ae ^-kx, where x is the position;A and I are constants that have units of N and m^-1 , respectivel
    11·1 answer
  • What is the torque τa about axis a due to the force f⃗ ? express the torque about axis a at cartesian coordinates (0,0)?
    9·1 answer
  • A wave travels through a medium at 251 m/s and has a wavelength of 5.10 cm. What is its frequency? What is its angular frequency
    14·1 answer
  • A hollow cylinder of mass 2.00 kg, inner radius 0.100 m, and outer radius 0.200 m is free to rotate without friction around a ho
    7·1 answer
  • Sheila (m=56.8 kg) is in her saucer sled moving at 12.6 m/s at the bottom of the sledding hill near Bluebird Lake. She approache
    11·1 answer
  • A Roller Derby Exhibition recently came to town. They packed the gym for twoconsecutive weekend nights at South's field house. O
    7·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • 1. A2 .7-kg copper block is given an initial speed of 4.0m/s on a rough horizontal surface. Because of friction, the block final
    10·1 answer
  • What is the work done by the 200.-N tension shown if it is used to drag the 150-N crate 25 m across the floor at a constant spee
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!