Answer:
F=126339.5N
Explanation:
to find the necessary force to escape we must make a free-body diagram on the hatch, taking into account that we will match the forces that go down with those that go up, taking into account the above we propose the following equation,
Fw=W+Fi+F
where
Fw= force or weight produced by the water column above the submarine.
to fint Fw we can use the following ecuation
Fw=h. γ. A
h=distance
γ=
specific weight for seawater = 10074N / m ^ 3
A=Area
Fw=28x10074x0.7=197467N
w is the weight of the hatch = 200N
Fi is the internal force of the submarine produced by the pressure = 1atm = 101325Pa for this we can use the following formula
Fi=PA=101325x0.7=70927.5N
finally the force that is needed to open the hatch is given by the initial equation
Fw=W+Fi+F
F=Fw-W+Fi
F=197467N-200N-70927.5N
F=126339.5N
Answer:
a) Focal length of the lens is 8 cm which is a convex lens
b) 6 cm
c) The lens is a convex lens and produces a virtual image which is upright and two times larger than the object.
Explanation:
u = Object distance = 4 cm
v = Image distance = -8 cm
f = Focal length
Lens Equation

a) Focal length of the lens is 8 cm which is a convex lens
Magnification

b) Height of image is 2×3 = 6 cm
Since magnification is positive the image upright
c) The lens is a convex lens and produces a virtual image which is upright and two times larger than the object.
From
the problem statement, this is a conversion problem. We are asked to convert
from units of grams to units of kilograms. To do this, we need a
conversion factor which would relate the different units involved. We either
multiply or divide this certain value to the original measurement depending on
what is asked. From literature, we will find that 1000 grams is equal to 1 kilogram. We use this as follows:
<span> 1.440x10^6 g ( 1 kg / 1000 g ) = 1440 kg</span><span>
</span>