answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
2 years ago
12

Explain the microsoft word skills you are most confident in performing.​

Physics
1 answer:
Sladkaya [172]2 years ago
4 0
Yes this is not gonna work
You might be interested in
A block of mass m is pushed up against a spring with spring constant k until the spring has been compressed a distance x from eq
Snowcat [4.5K]

Answer:d

Explanation:

Spring is compressed to a distance of x from its equilibrium position

Work done by block on the spring is equal to change in elastic potential energy

i.e. Work done by block W=\frac{1}{2}kx^2

therefore spring will also done an equal opposite amount of work on the block in the absence of external force

Thus work done by spring on the block W=-\frac{1}{2}kx^2

Thus option d is correct

6 0
2 years ago
A pole-vaulter is nearly motionless as he clears the bar, set 4.2 m above the ground. he then falls onto a thick pad. the top of
scZoUnD [109]
Refer to the diagram shown below.

Neglect wind resistance, and use g = 9.8 m/s².

The pole vaulter falls with an initial vertical velocity of u = 0.
If the velocity upon hitting the pad is v, then
v² = 2*(9.8 m/s²)*(4.2 m) = 82.32 (m/s)²
v = 9.037 m/s

The pole vaulter comes to res after the pad compresses by  50 cm (or 0.5 m).
If the average acceleration (actually deceleration) is (a m/s²), then
0 = (9.037 m/s)² + 2*(a m/s²)*(0.5 m)
a = - 82.32/(2*0.5) = - 82 m/s²

Answer: - 82 m/s² (or a deceleration of 82 m/s²)

8 0
2 years ago
Read 2 more answers
You are moving at a speed 2/3 c toward Randy when shines a light toward you. At what speed do you see the light approaching you
lord [1]

Answer:

The speed of light will be c=3x10^8m/s

Explanation:

This is the same as the speed of light because your speed does not affecttje speed of light so you will see the light approaching you at the same speed of light c

5 0
2 years ago
A 248-g piece of copper is dropped into 390 mL of water at 22.6 °C. The final temperature of the water was measured as 39.9 °C.
Sedaia [141]

Answer:

335°C

Explanation:

Heat gained or lost is:

q = m C ΔT

where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.

Heat gained by the water = heat lost by the copper

mw Cw ΔTw = mc Cc ΔTc

The water and copper reach the same final temperature, so:

mw Cw (T - Tw) = mc Cc (Tc - T)

Given:

mw = 390 g

Cw = 4.186 J/g/°C

Tw = 22.6°C

mc = 248 g

Cc = 0.386 J/g/°C

T = 39.9°C

Find: Tc

(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)

Tc = 335

7 0
2 years ago
When jumping, a flea accelerates at an astounding 1000 m/s2 but over the very short distance of 0.50 mm. If a flea jumps straigh
Nadusha1986 [10]

Answer:

The flea reaches a height of 51 mm.

Explanation:

Hi there!

The equations of height and velocity of the flea are the following:

During the jump:

h = h0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

While in free fall:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the flea at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

a = acceleration of the flea due to the jump.

v = velocity of the flea at time t.

g = acceleration due to gravity.

First, let's calculate how much time it takes the flea to reach a height of 0.0005 m. With that time, we can calculate the speed reached by the flea during the jump:

h = h0 + v0 · t + 1/2 · a · t²

If we place the origin of the frame of reference on the ground, then, h0 = 0. Since the flea is initially at rest, v0 = 0. Then:

h = 1/2 · a · t²

We have to find the value of t for which h = 0.0005 m:

0.0005 m = 1/2 · 1000 m/s² · t²

0.0005 m / 500 m/s² = t²

t = 0.001 s

Now, let's find the velocity reached in that time:

v = v0 + a · t   (v0 = 0)

v = a · t

v = 1000 m/s² · 0.001 s

v = 1.00 m/s

When the flea is at a height of 0.50 mm, its velocity is 1.00 m/s. This initial velocity will start to decrease due to the downward acceleration of gravity. When the velocity is zero, the flea will be at the maximum height. Using the equation of velocity, let's find the time at which the flea is at the maximum height (v = 0):

v = v0 + g · t

At the maximum height, v = 0:

0 m/s = 1.00 m/s - 9.81 m/s² · t

-1.00 m/s / -9.81 m/s² = t

t = 0.102 s

Now, let's find the height reached by the flea in that time:

h = h0 + v0 · t + 1/2 · g · t²

h = 0.0005 m + 1.00 m/s · 0.102 s - 1/2 · 9.81 m/s² · (0.102 s)²

h = 0.051 m

The flea reaches a height of 51 mm.

5 0
2 years ago
Other questions:
  • A block weighing 15 newtons is pulled to the top of an incline that is 0.20 meter above the ground, as shown below. if 4.0 joule
    14·1 answer
  • Which magnetic property best describes a magnet’s ability to act at a distance? Magnets are dipolar. Magnets attract only certai
    14·2 answers
  • Karyotypes are done by matching up _____________________________ so that they are paired up. Question 11 options:
    13·2 answers
  • What meal can you get from standing on a hot sidewalk riddle answer?
    9·1 answer
  • A truck moving at 36 m/s passes a police car moving at 45 m/s in the opposite direction. If the frequency of the siren is 500 Hz
    12·1 answer
  • A ball thrown straight up climbs for 3.0 sec before falling. Neglecting air resistance, with what velocity was the ball thrown?
    8·1 answer
  • Th e heat capacity of air is much smaller than that of water, and relatively modest amounts of heat are needed to change its tem
    12·2 answers
  • Water (cp = 4180 J/kg·K) is to be heated by solar-heated hot air (cp = 1010 J/kg·K) in a double-pipe counter-flow heat exchanger
    15·1 answer
  • The position (in radians) of a car traveling around a curve is described by Θ (t) = t 3 - 2t 2 - 4t + 10 where t (in seconds). W
    10·1 answer
  • A sock with a mass of 0.03 kg is stuck to the inside of a clothes dryer spins
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!