answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
2 years ago
15

A pole-vaulter is nearly motionless as he clears the bar, set 4.2 m above the ground. he then falls onto a thick pad. the top of

the pad is 80 cm above the ground, and it compresses by 50 cm as he comes to rest. what is the magnitude of his accelerations he comes to rest on the pad

Physics
2 answers:
scZoUnD [109]2 years ago
8 0
Refer to the diagram shown below.

Neglect wind resistance, and use g = 9.8 m/s².

The pole vaulter falls with an initial vertical velocity of u = 0.
If the velocity upon hitting the pad is v, then
v² = 2*(9.8 m/s²)*(4.2 m) = 82.32 (m/s)²
v = 9.037 m/s

The pole vaulter comes to res after the pad compresses by  50 cm (or 0.5 m).
If the average acceleration (actually deceleration) is (a m/s²), then
0 = (9.037 m/s)² + 2*(a m/s²)*(0.5 m)
a = - 82.32/(2*0.5) = - 82 m/s²

Answer: - 82 m/s² (or a deceleration of 82 m/s²)

sertanlavr [38]2 years ago
8 0

The magnitude of his accelerations on the pad is 66.64 m/s²

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

height of pole vaulter above the pad = H = 4.2 - 0.8 = 3.4 m

distance of compression of pad = d = 50 cm = 0.5 m

<u>Unknown:</u>

a = ?

<u>Solution:</u>

Firstly , we calculate the velocity of pole-vaulter before hitting the pad.

v^2 = u^2 + 2gH

v^2 = 0^2 + 2 \times 9.8 \times 3.4

v^2 = 1666/25

v = \frac{7 \sqrt{34}}{5} ~ m/s

Next , we can calculate the magnitude of his accelerations on the pad.

v^2 = u^2 + 2gH

0^2 = 1666/25 + 2 \times a \times 0.5

a = -1666/25

\large {\boxed {a = -66.64 ~ m/s^2} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

You might be interested in
Dane is standing on the moon holding an 8 kilogram brick 2 metres above the ground. How much energy is in the brick's gravitatio
Nadya [2.5K]

The gravitational potential energy of the brick is 25.6 J

Explanation:

The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.

Near the surface of a planet, the gravitational potential energy is given by

PE=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the height of the object relative to the ground

For the brick in this problem, we have:

m = 8 kg is its mass

g = 1.6 N/kg is the strenght of the gravitational field on the moon

h = 2 m is the height above the ground

Substituting, we find:

PE=(8)(1.6)(2)=25.6 J

Learn more about potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

3 0
1 year ago
Read 2 more answers
One of the main factors driving improvements in the cost and complexity of integrated circuits (ICs) is improvements in photolit
nika2105 [10]

Answer:

0.000003782 m

0.000001891 m

0.000001197125 m

Explanation:

\lambda = Wavelength = 248 nm

D = Diameter of beam = 1 cm

f = Focal length = 0.625 cm

The angle is given by

\theta=\dfrac{1.22\lambda}{D}

The width is given by

d=2\theta f\\\Rightarrow d=2\dfrac{1.22\lambda f}{D}\\\Rightarrow d=2\dfrac{1.22\times 248\times 10^{-9}\times 6.25\times 10^{-2}}{1\times 10^{-2}}\\\Rightarrow d=0.000003782\ m

The required width is 0.000003782 m

Minimum resolvable line separation is given by

\dfrac{0.000003782}{2}=0.000001891\ m

The minimum resolvable line separation between adjacent lines is 0.000001891 m

when \lambda=157\ nm

d=2\dfrac{1.22\times 157\times 10^{-9}\times 6.25\times 10^{-2}}{1\times 10^{-2}}\\\Rightarrow d=0.00000239425\ m

The new minimum resolvable line separation between adjacent lines is

\dfrac{0.00000239425}{2}=0.000001197125\ m

6 0
2 years ago
Substance X is placed in a container with substance Y. Both substances are fluids. Substance X initially sinks to the bottom of
Brut [27]

Answer: Option (A) is the correct answer.

Explanation:

Convection is a process in which heat transfers from a hotter substance to a colder substance.

As a result, the substance which is less dense will rise and the more denser substance will sink due to the influence of gravity.

Thus, we can conclude that in the given situation substance X will rise due to convection.

3 0
2 years ago
Read 2 more answers
If an electronic circuit experiences a loss of 3 decibels with an input power of 6 watts, what would its output power be, to the
agasfer [191]

Answer:

Output power of the circuit is 3 Watt.

Given:

loss in decibles = 3 dB

Input power = 6 Watt

To find:

Output power = ?

Formula used:

Output power = Input power × loss in ratio

Solution:

3 dB loss = 0.5 ratio

Output power is given by,

Output power = Input power × loss in ratio

Output power = 6 × 0.5

Output power = 3 Watt

Thus, output power of the circuit is 3 Watt.

4 0
1 year ago
Read 2 more answers
A container explodes and breaks into three fragments that fly off 120° apart from each other, with mass ratios 1: 4: 2. If the f
RSB [31]

Answer:

V₂ = 1.5 m/s

Explanation:

given,

speed of the first piece = 6 m/s

speed of the third piece = 3 m/s

speed of the second fragment = ?

mass ratios = 1 : 4 : 2

fragment break  fly off = 120°

α = β = γ  = 120°

sin α = sin β = sin γ = 0.866

using lammi's theorem

\dfrac{A}{sin\alpha}=\dfrac{B}{sin\beta}=\dfrac{C}{sin\gamma}

A,B and C is momentum of the fragments

\dfrac{m\times 6}{0.866}=\dfrac{4m\times v_2}{0.866}=\dfrac{2m\times 3}{0.866}

4 x V₂ = 2 x 3

V₂ = 1.5 m/s

3 0
2 years ago
Other questions:
  • Which statement correctly describes magnetism?
    15·2 answers
  • Vector A⃗ has a magnitude of 3.00 and is directed parallel to the negative y-axis and vector B⃗ has a magnitude of 3.00 and is d
    6·2 answers
  • What is the total energy released when 9.11 x10^-31 ki?
    7·1 answer
  • Every morning Ann walks her dog through the park, shown as a green square on the diagram below. They start at point 1, walk one
    11·1 answer
  • What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resti
    8·1 answer
  • A small lab cart and one of larger mass collide and rebound off each other. Which of them has the greater average force on it du
    12·1 answer
  • A moving sidewalk has a velocity of 1.7m/s north. if a man walks 1.1m/s, how long does it take him to travel 15m north in relati
    8·1 answer
  • Two speedboats are traveling at the same speed relative to the water in opposite directions in a moving river. An observer on th
    9·1 answer
  • A 40-kg uniform semicircular sign 1.6 m in diameter is supported by two wires as shown. What
    10·1 answer
  • A 0.311 kg tennis racket moving 30.3 m/s east makes an elastic collision with a 0.0570 kg ball moving 19.2 m/s east find the vel
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!