the electric force decreases because the distance has an indirect relationship to the force
Explanation:
The electric force between two objects is given by

where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the distance between the two objects
As we can see from the formula, the magnitude of the force is inversely proportional to the square of the distance: so, when the distance between the object increases, the magnitude of the force decreases.
Answer:
The car strikes the tree with a final speed of 4.165 m/s
The acceleration need to be of -5.19 m/seg2 to avoid collision by 0.5m
Explanation:
First we need to calculate the initial speed 
Once we have the initial speed, we can isolate the final speed from following equation:
Then we can calculate the aceleration where the car stops 0.5 m before striking the tree.
To do that, we replace 62 m in the first formula, as follows:

Answer:
The following equation can be used.
(32°F − 32) × 5/9=C
To answer the problem we would be using this formula which isv = sqrt(T/(m/L))
v = sqrt(100 N / [(0.100 kg)/(1.0 m)])
v = 31.62 m/s
v = fλ
31.62 m/s = (95 Hz)(λ)
λ = 0.333 m
For every wavelength along a string there will be 2 antinodes.
1.0 m / 0.333 m = 3
3 * 2 = 6 antinodes
6 + 1 = 7 nodes