Answer:
<em>The object could fall from six times the original height and still be safe</em>
Explanation:
<u>Free Falling</u>
When an object is released from rest in free air (no friction), the motion is completely dependant on the acceleration of gravity g.
If we drop an object of mass m near the Earth surface from a height h, it has initial mechanical energy of

When the object strikes the ground, all the mechanical energy (only potential energy) becomes into kinetic energy

Where v is the speed just before hitting the ground
If we know the speed v is safe for the integrity of the object, then we can know the height it was dropped from

Solving for h

If the drop had occurred in the Moon, then

Where hM, vM and gM are the corresponding parameters on the Moon. We know v is the safe hitting speed and the gravitational acceleration on the Moon is g_M=1/6 g


This means the object could fall from six times the original height and still be safe
Answer:
0.9378
Explanation:
Weight (W) of the rider = 100 kg;
since 1 kg = 9.8067 N
100 kg will be = 980.67 N
W = 980.67 N
At the slope of 12%, the angle θ is calculated as:

The drag force D = Wsinθ

where;

A = 0.9 m²
V = 15 m/s
∴
Drag coefficient 


Answer:
false.
Explanation:
Ok, we define average velocity as the sum of the initial and final velocity divided by two.
Remember that the velocity is a vector, so it has a direction.
Then when she goes from the 1st end to the other, the velocity is positive
When she goes back, the velocity is negative
if both cases the magnitude of the velocity, the speed, is the same, then the average velocity is:
AV = (V + (-V))/2 = 0
While the average speed is the quotient between the total distance traveled (twice the length of the pool) and the time it took to travel it.
So we already can see that the average velocity will not be equal to half of the average speed.
The statement is false
Answer:
- The total distance traveled is 28 inches.
- The displacement is 2 inches to the east.
Explanation:
Lets put a frame of reference in the problem. Starting the frame of reference at the point with the 0-inch mark, and making the unit vector
pointing in the west direction, the ant start at position

Then, moves to

so, the distance traveled here is



after this, the ant travels to

so, the distance traveled here is



The total distance traveled will be:

The displacement is the final position vector minus the initial position vector:



This is 2 inches to the east.
Answer:
N = 23.4 N
Explanation:
After reading that long sentence, let's solve the question
The contact force is the so-called normal in this case we can find it by writing the translational equilibrium equation for the y axis
N - w₁ -w₂ =
N = m₁ g + m₂ g
N = g (m₁ + m₂)
let's calculate
N = 9.8 (0.760 + 1.630)
N = 23.4 N
This is the force of the support of the two blocks on the surface.