answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OleMash [197]
2 years ago
13

hockey puck slides across the ice with an initial velocity of 7.2 m/s. It has a deceleration of 1.1 m/s2 and is traveling toward

the goal 5.0 m away. How much time does the goalie have to stop the puck?
Physics
2 answers:
dimulka [17.4K]2 years ago
7 0

For this use the formula:

d = Vo * t - (at^2) / 2

Clearing t:

t = d/(v + 0.5*a)

Replacing:

t = 5 m / (7.2 m/s + 0.5 * (-1.1 m/s²)

Resolving:

t = 5 m / (7.2 m/s + (-0.55 m/s²)

t = 5 m / 6.65 m/s

t = 0.75 s

Result:

The time will be <u>0.75 seconds.</u>

Vlad1618 [11]2 years ago
7 0
.75 seconds is the amount of time the goalie has to stop the puck
You might be interested in
Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
Sunny_sXe [5.5K]

Answer:

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

Explanation:

This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,

      n₁ sin θ₁ = n₂ sin θ₂

where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

1 sin θ₁ = 1.33 sin θ₂

        θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

4 0
2 years ago
Two objects, each of weight W, hang vertically by spring scales as shown in the figure. The pulleys and the strings attached to
valentinak56 [21]

The reading on the scale is the tension on the string that connects the two objecst. In order to support the blocks it must pull the weights by a force magnitude of W. So, the tension of the rope is W. Therefore, the reading on the scale is W, D.


I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!

6 0
2 years ago
Read 2 more answers
Some of the fastest dragsters (called "top fuel) do not race for more than 300-400m for safety reasons. Consider such a dragster
Masja [62]

Answer:

1.10261 times g

416.17506 mph

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

s=ut+\frac{1}{2}at^2\\\Rightarrow 400=0\times 8.6+\frac{1}{2}\times a\times 8.6^2\\\Rightarrow a=\frac{400\times 2}{8.6^2}\\\Rightarrow a=10.81665\ m/s^2

Dividing by g

\dfrac{a}{g}=\dfrac{10.81665}{9.81}\\\Rightarrow \dfrac{a}{g}=1.10261\\\Rightarrow a=1.10261g

The acceleration is 1.10261 times g

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 10.81665\times 1.6\times 10^3+0^2}\\\Rightarrow v=186.04644\ m/s

In mph

186.04644\times \dfrac{3600}{1609.34}=416.17506\ mph

The speed of the dragster is 416.17506 mph

5 0
2 years ago
true or false:acceleration toward the center of a curved or circular path is called gravitational acceleration.
nalin [4]
Nope. It's called 'centripetal' acceleration. The force that created it MAY be gravitational, but it doesn't have to be. For things on the surface of the Earth moving in circles, it's never gravity.
5 0
2 years ago
In mammals, the weight of the heart is approximately 0.5% of the total body weight. Write a linear model that gives the heart we
jekas [21]

Answer:

The weight of heart of a human is 0.93 lbs.

Explanation:

Given that,

Approximately weight of heart is 0.5 % of the total body weight.

Weight of human = 185 lbs

Let the the weight of total body is w and weight of heart is w_{h}.

We need to calculate the weight of heart of a human

Using given data

w_{h}=0.5\times w

Where, h = weight of heart

w = weight of human

w_{h}=\dfrac{0.5}{100}\times 185

w_{h}=0.93\ lbs

Hence, The weight of heart of a human is 0.93 lbs.

8 0
2 years ago
Other questions:
  • Find τf, the torque about point p due to the force applied by the achilles' tendon.
    11·1 answer
  • Roads often have to be repaved because they crack over time. Sometimes this cracking is due to the fact that the roads (as well
    7·1 answer
  • An amusement park ride spins you around in a circle of radius 2.5 m with a speed of 8.5 m/s. If your mass is 75 kg, what is the
    5·2 answers
  • Assume you are driving 20 mph on a straight road. Also, assume that at a speed of 20 miles per hour, it takes 100 feet to stop.
    11·2 answers
  • To hoist himself into a tree, a 72.0-kg man ties one end of a nylon rope around his waist and throws the other end over a branch
    14·1 answer
  • In which case does viscosity play a dominant role? Case A: a typical bacterium (size ~ 1 mm1 mm and velocity ~ 20 mm/s20 mm/s) i
    13·1 answer
  • Seema knows the mass of basketball. What other information is needed to find the balls potential energy
    5·2 answers
  • . A magnetic field has a magnitude of 0.078 T and is uniform over a circular surface whose radius is 0.10 m. The field is orient
    15·1 answer
  • 1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a tur
    10·1 answer
  • Consider a space shuttle which has a mass of about 1.0 x 105 kg and circles the Earth at an altitude of about 200.0 km. Calculat
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!