Answer:
Hey there,
Your answer is iii. Brown cows produce white milk. (1 point) <u>and</u> ii. Brown cows never produce chocolate milk. (1 point)
You already know from the basic understanding that chocolate comes from beans, not cows, and is added to milk, and thereby- brown cows do not produce chocolate milk. You also know that they produce white milk.
Wbob1314
if you have any questions I <em><u>INSIST</u></em> you ask them in the comments.
Answer:
a. the solution will be weakly basic.
b. Greater than 7 because CN⁻ is a stronger base than NH₄⁺ is an acid.
Explanation:
a. The fluoride ion (F⁻) reacts with water thus:
F⁻ + H₂O → HF + OH⁻
That means that fluoride ions produce OH⁻ ions in solution doing <em>the solution will be weakly basic.</em>
b. The acidic equilibrium of NH₄⁺ is:
NH₄⁺ ⇄ NH₃ + H⁺ with a ka of 5,6x10⁻¹⁰.
The basic equilibrium of CN⁻ is:
CN⁻ + H₂O → HCN + OH⁻ with a kb of 2x10⁻⁵
That means that the production of OH⁻ from CN⁻ is higher than production of H⁺ from NH₄⁺. The CN⁻ is a stronger base than NH₄⁺ is an acid.
Thus, the pH of a salt solution of NH₄CN would be <em>Greater than 7 because CN⁻ is a stronger base than NH₄⁺ is an acid.</em>
<em></em>
I hope ot helps!
Answer:
The partial pressure of NO2 = 0.152 atm
Explanation:
Step 1: Data given
Pressure NO2 = 0.500 atm
Total pressure at equilibrium = 0.674 atm
Step 2: The balanced equation
2NO2(g) → 2NO(g) + O2(g)
Step 3: The initial pressure
pNO2 = 0.500 atm
pNO = 0 atm
p O2 = 0 atm
Step 4: Calculate pressure at the equilibrium
For 2 moles NO2 we'll have 2 moles NO and 1 mol O2
pNO2 = 0.500 - 2x atm
pNO =2x atm
pO2 = xatm
The total pressure = p(total) = p(NO2) + p(NO) + p(O2)
p(total) = (0.500 - 2x) + 2x + x= 0.674 atm
0.500 + x = 0.674 atm
x = 0.174 atm
This means the partial pressure of NO2 = 0.500 - 2*0.174 = 0.152 atm
Reactivity is a chemical
property of a substance. According to EPA regulations, it is normally unstable
and readily
undergoes violent change without
detonating. it can explode or violently react when exposed to water, when
heated, or under STP.