First, let's determine the number of moles of carbon atoms by using molar mass. Then, using Avogadro's number, we can find the number of C atoms:
*1 mole of C3H8O= (12.0x3)+(1.0x8)+(16.0x1) = 60.0g/mol
25.0 grams C3H8O x (1 mole C3H8O/60.0 grams) = 0.417 mol
0.417mol C3H8O has (3 x 0.417 moles) C atoms = 1.251 moles C atoms
1.251 moles C atoms x(6.022x10^23 atoms/mol) = 9.42x10^23 C atoms.
The answer is in 3 significant figures, as that's what we have in the given, and we matched it with our rounding of the atomic masses from the periodic table.
You can do this all in one equation written left to right, just exclude the intermediate answers. Just easier to show it this way on the computer screen.
Answer:
8
Explanation:
To solve this question, we just need to put the new number into the equation. If [A] remain constant then that mean [A2]= [A1]. If B doubled, then that mean [B2]= 2[B2]. To find what factor does the rate of reaction increases, we need to divide the first reaction rate with the second. The calculation will be:
rate2/rate1= k[A2][B2]³ / k[A1][B1]³
rate2/rate1= [A1][2B1]³ / [A1][B1]³
rate2/rate1= A1*8B1³ / A1*B1³
rate2/rate1= 8/1= 8
The rate of reaction will be 8 times faster.
Answer: 65.7 grams
Explanation:
1) ratio
Since 1 mole of CaF2 contains 1 mol of F2, the ratio is:
1 mol CaF2 : 1 mol F2
2) So, to produce 8.41 * 10^ -1` mol of F2 you need the same number of moles of CaF2.
3) use the formula:
mass in grams = molar mass * number of moles
molar mass of CaF2 = 40.1 g/mol + 2 * 19.0 g/mol = 78.1 g/mol
mass in grams = 78.1 g/mol * 8.41 * 10^ -1 mol = 65.7 grams
Lets assume the gas is acting Ideally, then According to Ideal Gas Equation the density is given as,
d = P M / R T ------- (1)
Where;
P = Pressure = 1.03 atm
M = Molar Mass = 146.06 g/mol
R = Gas Constant = 0.08206 atm.L.mol⁻¹.K⁻¹
T = Temperature = 297 K
Putting Values in eq. 1,
d = (1.03 atm × 146.06 g/mol) ÷ (0.08206 atm.L.mol⁻¹.K⁻¹ × 297 K)
density = 6.17 g/L