Answer:
"statement 2" for the first pair and "statement 1" for the second pair
Explanation:
Answer:

Explanation:
Hello,
In this case, mercury (II) oxide (HgO) is obtained via the reaction:

Nonetheless, since it is a reaction carried out in basic solution, mercury's half-reaction only, must be:

Thus, it is seen that OH ionis should be added due to the basic aqueous solution considering that 2 electrons are transferred from 0 to 2 in mercury.
Best regards.
Answer:
The concentration of sodium chloride in an aqueous solution that is 2.23 M and that has a density of 1.01 g/mL is 12.90% by mass
Explanation:
2.23 M aqueous solution of NaCl means there are 2.23 moles of NaCl in 1000 mL of solution.
We know that density is equal to ratio of mass to volume.
Here density of solution is 1.01 g/mL.
So mass of 1000 mL solution = (
) g = 1010 g
molar mass of NaCl = 58.44 g/mol
So mass of 2.23 moles of NaCl = (
) g = 130.3 g
% by mass is ratio of mass of solute to mass of solution and then multiplied by 100.
Here solute is NaCl.
So % by mass of 2.23 M aqueous solution of NaCl =
% = 12.90%
Answer:
a)4.51
b) 9.96
Explanation:
Given:
NaOH = 0.112M
H2S03 = 0.112 M
V = 60 ml
H2S03 pKa1= 1.857
pKa2 = 7.172
a) to calculate pH at first equivalence point, we calculate the pH between pKa1 and pKa2 as it is in between.
Therefore, the half points will also be the middle point.
Solving, we have:
pH = (½)* pKa1 + pKa2
pH = (½) * (1.857 + 7.172)
= 4.51
Thus, pH at first equivalence point is 4.51
b) pH at second equivalence point:
We already know there is a presence of SO3-2, and it ionizes to form
SO3-2 + H2O <>HSO3- + OH-
![Kb = \frac{[ HSO3-][0H-]}{SO3-2}](https://tex.z-dn.net/?f=%20Kb%20%3D%20%5Cfrac%7B%5B%20HSO3-%5D%5B0H-%5D%7D%7BSO3-2%7D)

[HSO3-] = x = [OH-]
mmol of SO3-2 = MV
= 0.112 * 60 = 6.72
We need to find the V of NaOh,
V of NaOh = (2 * mmol)/M
= (2 * 6.72)/0.122
= 120ml
For total V in equivalence point, we have:
60ml + 120ml = 180ml
[S03-2] = 6.72/120
= 0.056 M
Substituting for values gotten in the equation ![Kb=\frac{[HSO3-][OH-]}{[SO3-2]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BHSO3-%5D%5BOH-%5D%7D%7B%5BSO3-2%5D%7D%20)
We noe have:

![x = [OH-] = 9.11*10^-^5](https://tex.z-dn.net/?f=x%20%3D%20%5BOH-%5D%20%3D%209.11%2A10%5E-%5E5)

=4.04
pH = 14- pOH
= 14 - 4.04
= 9.96
The pH at second equivalence point is 9.96