160,000 - 40,000= 120,000/4 = 3 sets of new tires in the first year and 4 every consecutive year.
0.5625 is the answer I got. Hope this helps. Leave a thanks if so. ☺♥
Nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Answer: a.) 40320
b.) 336
Step-by-step explanation:
since we have 8 possible positions, with 8 different candidates, then there are 8 possible ways of arranging the first position, 7 possible ways of arranging the Second position, 6 ways of arranging the 3rd position, 5 possible ways od arranging the 4th position, 4 possible ways of arranging the 5th position, 3 possible ways of arranging the 6th position, 2 possible ways of arranging the 7th position and just one way of arranging the 8th position since we have only one person left.
Hence, the Number of possible sample space for different 8 positions is by multiplying all the number of ways we have in our sample space which becomes:
8*7*6*5*4*3*2*1 = 40320.
b.) By the sample space we have, since we've been asked ti arrange for only the firat 3 positions, then we multiply just for the first 3ways of choosing the positions, this becomes:
8*7*6 = 336
Answer:
84? Not sure but pretty sure
Step-by-step explanation:
In a straight line, the word can only be spelled on the diagonals, and there are only two diagonals in each direction that have 2 O's.
If 90° and reflex turns are allowed, then the number substantially increases.
Corner R: can only go to the adjacent diagonal O, and from there to one other O, then to any of the 3 M's, for a total of 3 paths.
2nd R from the left: can go to either of two O's, one of which is the same corner O as above. So it has the same 3 paths. The center O can go to any of 4 Os that are adjacent to an M, for a total of 10 more paths. That's 13 paths from the 2nd R.
Middle R can go the three O's on the adjacent row, so can access the three paths available from each corner O along with the 10 paths available from the center O, for a total of 16 paths.
Then paths accessible from the top row of R's are 3 +10 +16 +10 +3 = 42 paths. There are two such rows of R's so a total of 84 paths.