answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
2 years ago
4

A solid, homogeneous sphere with a mass of m0, a radius of r0 and a density of ρ0 is placed in a container of water. Initially t

he sphere floats and the water level is marked on the side of the container. What happens to the water level, when the original sphere is replaced with a new sphere which has different physical parameters? Notation: r means the water level rises in the container, f means falls, s means stays the same.
A)
The new sphere has a density of ρ = ρ0 and a mass of m < m0.

B)
The new sphere has a density of ρ = ρ0 and a radius of r > r0.

C)
The new sphere has a density of ρ < ρ0 and a mass of m = m0.

The options are r, f, and s. Rises, Falls, Stays the same.
Physics
1 answer:
uysha [10]2 years ago
7 0

Answer:

(a) f

(b) r

(c) s

Explanation:

There are two forces on the sphere: weight and buoyancy.

Sum of forces in the y direction:

∑F = ma

B − mg = 0

B = mg

Buoyancy is equal to the weight of the displaced fluid, or ρVg, where ρ is the density of the fluid and V is the displaced volume.

ρVg = mg

ρV = m

V = m/ρ

(a) The mass decreases, so the displaced volume decreases.

(b) The sphere's density is constant and its radius increases, which means its mass increases, so the displaced volume increases.

(c) The mass stays the same, so the displaced volume is the same.

You might be interested in
A 250 GeV beam of protons is fired over a distance of 1 km. If the initial size of the wave packet is 1 mm, find its final size
Margarita [4]

Answer:

The final size is approximately equal to the initial size due to a very small relative increase of 1.055\times 10^{- 7} in its size

Solution:

As per the question:

The energy of the proton beam, E = 250 GeV =250\times 10^{9}\times 1.6\times 10^{- 19} = 4\times 10^{- 8} J

Distance covered by photon, d = 1 km = 1000 m

Mass of proton, m_{p} = 1.67\times 10^{- 27} kg

The initial size of the wave packet, \Delta t_{o} = 1 mm = 1\times 10^{- 3} m

Now,

This is relativistic in nature

The rest mass energy associated with the proton is given by:

E = m_{p}c^{2}

E = 1.67\times 10^{- 27}\times (3\times 10^{8})^{2} = 1.503\times 10^{- 10} J

This energy of proton is \simeq 250 GeV

Thus the speed of the proton, v\simeq c

Now, the time taken to cover 1 km = 1000 m of the distance:

T = \frac{1000}{v}

T = \frac{1000}{c} = \frac{1000}{3\times 10^{8}} = 3.34\times 10^{- 6} s

Now, in accordance to the dispersion factor;

\frac{\delta t_{o}}{\Delta t_{o}} = \frac{ht_{o}}{2\pi m_{p}\Delta t_{o}^{2}}

\frac{\delta t_{o}}{\Delta t_{o}} = \frac{6.626\times 10^{- 34}\times 3.34\times 10^{- 6}}{2\pi 1.67\times 10^{- 27}\times (10^{- 3})^{2} = 1.055\times 10^{- 7}

Thus the increase in wave packet's width is relatively quite small.

Hence, we can say that:

\Delta t_{o} = \Delta t

where

\Delta t = final width

3 0
2 years ago
Tex, an 85.0 kilogram rodeo bull rider is thrown from the bull after a short ride. The 520. kilogram bull chases after Tex at 13
Julli [10]
The question above can be answered through using the concept of Conservation of Momentum which may be expressed as,
                 m1v1 + m2v2 = mTvT
where m1 and v1 are mass and initial velocity of Tex, 2s are that of the bull, and the Ts are the total. Then substituting,
                    (85 kg)(3 m/s) + (520 kg)(13 m/s) = (520 + 85)(vT)
The value of vT obtained from above equation is 11.6 m/s
3 0
2 years ago
A car of mass 1100kg moves at 24 m/s. What is the braking force needed to bring the car to a halt in 2.0 seconds? N
LenaWriter [7]

13200N

Explanation:

Given parameters:

Mass = 1100kg

Velocity = 24m/s

time = 2s

unknown:

Braking force = ?

Solution:

The braking force is the force needed to stop the car from moving.

   Force  =  ma = \frac{mv}{t}

  m is the mass of the car

  v is the velocity

  t is the time taken

  Force = \frac{1100 x 24}{2} = 13200N

Learn more:

Force brainly.com/question/4033012

#learnwithBrainly

8 0
2 years ago
A wave has a frequency of 46 Hz and a wavelength of 1.7 meters. What is the wave speed wave?
arlik [135]

Answer:

Explanation:

(1.7 m/cycle)(46 cycle/s) = 78.2 m/s

4 0
2 years ago
Sachi wants to throw a water balloon to knock over a target and win a prize. The target will only fall over if it is hit with a
posledela

Answer:

3.1 m/s²

Explanation:

Given:

Mass of the balloon (m) = 11.4 g = 0.0114 kg ( 1 kg = 1000 g)

Force acting on the balloon (F) = 0.035 N

Acceleration with which the balloon must be hit (a) = ?

Now, we know that, from Newton's second law, net force acting on an object is equal to the product of its mass and acceleration.

Therefore, framing in equation form, we have:

F=ma

Rewriting in terms of acceleration 'a', we get:

a=\frac{F}{m}

Now, substitute the given values and solve for 'a'. This gives,

a=\frac{0.035\ N}{0.0114\ kg}\\\\a=3.07\approx 3.1\ m/s^2(Nearest\ tenth)

Therefore, the acceleration of the water balloon to reach the target must be equal to 3.1 m/s².

7 0
2 years ago
Other questions:
  • A 0.500 kg aluminum pan on a stove is used to heat 0.250 liters of water from 20.0ºC to 80.0ºC. (a) How much heatis required? Wh
    15·1 answer
  • A car traveling at 91.0 km/h approaches the turn off for a restaurant 30.0 m ahead. If the driver slams on the brakes with the a
    15·1 answer
  • A stone with a mass of 1.0 kg is tied to the end of a light string which keeps it moving in a circle with a constant speed of 4.
    5·1 answer
  • the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
    14·1 answer
  • A book is moved once around the edge of a tabletop with dimensions 1.75 m à 2.25 m. If the book ends up at its initial position,
    10·1 answer
  • A vertical spring of constant k = 400 N/m hangs at rest. When a 2 kg mass is attached to it, and it is released, the spring exte
    6·1 answer
  • A heat engine (Power Cycle) with a thermal efficiency of 35 percent efficiency produces 750 kJ of work. Heat transfer to the eng
    10·1 answer
  • A 6.0-ω and a 12-ω resistor are connected in parallel across an ideal 36-v battery. What power is dissipated by the 6.0-ω res
    14·1 answer
  • I need help plz help me out 10 points!!!!!!!
    6·2 answers
  • Sunitha can type 1800 words in half an hour. What is her typing speed in words per minute?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!