Answer:
The value of x that gives the maximum transmission is 1/√e ≅0.607
Step-by-step explanation:
Lets call f the rate function f. Note that f(x) = k * x^2ln(1/x), where k is a positive constant (this is because f is proportional to the other expression). In order to compute the maximum of f in (0,1), we derivate f, using the product rule.

We need to equalize f' to 0
- k*(2x ln(1/x) - x) = 0 -------- We send k dividing to the other side
- 2x ln(1/x) - x = 0 -------- Now we take the x and move it to the other side
- 2x ln(1/x) = x -- Now, we send 2x dividing (note that x>0, so we can divide)
- ln(1/x) = x/2x = 1/2 ------- we send the natural logarithm as exp
- 1/x = e^(1/2)
- x = 1/e^(1/2) = 1/√e ≅ 0.607
Thus, the value of x that gives the maximum transmission is 1/√e.
D $837,000 because your dealing with a negative number. -$453 - 384 = 744 because your still going down in the negatives.<span />
I found a similar problem to your problem here, which is shown in the attached picture. So, from the picture, we have to find the equation for the red line. All we have to do is find two points of the line. That would be: Point 1(2,0) and Point 2(-2,3). The general equation would be:
y - y₁ = (y₂-y₁)/(x₂ - x₁) * (x - x₁)
Substituting the coordinates to the equation,
y - 0 = (3-0)/(-2 - 2) * (x - 2)
y = -3(x -2)/4
Rearranging,
<em>4y = -3x + 6 or 4y + 3x = 6</em>
The height of Radon plant is 6.3 meters
<em><u>Solution:</u></em>
Given that, Allies plant has a height of 6 meters
Radon’s plant grows
meters higher
To find: Height of Radon plant
From given information,
Height of Allies plant = 6 meters
Height of radon plant =
+ Height of Allies plant
Substituting the known value,

Thus Radon plant grows to height of 6.3 meters