answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
2 years ago
15

Which is the graph of g(x) = (0.5)x + 3 – 4? On a coordinate plane, an exponential function decreases in quadrant 2 and has a ho

rizontal asymptote at y = negative 4. It crosses the y-axis at (0, negative 4). On a coordinate plane, an exponential function decreases in quadrant 2 and has a horizontal asymptote at y = 3. It crosses the y-axis at (0, 3). On a coordinate plane, an exponential function decreases in quadrant 2 and has a horizontal asymptote at y = negative 4. It crosses the y-axis at (0, 4). On a coordinate plane, an exponential function decreases in quadrant 2 and has a horizontal asymptote at y = 4. It crosses the y-axis at (0, 12).
Mathematics
2 answers:
natima [27]2 years ago
7 0

Answer: The correct answer is A.

i just did the quiz and put C but it is incorrect

hope this helps you :)

Mashcka [7]2 years ago
5 0

Answer:

The graph will be an exponential function that crosses the y-axis at about (0, -4).

Step-by-step explanation:

g(x) = (0.5)^{x + 3} - 4

That means that when x = 0...

g(0) = (0.5)^{0 + 3} - 4

g(0) = (0.5)^{3} - 4

g(0) = 0.125 - 4

g(0) = -3.875

So, the graph will be an exponential function that crosses the y-axis at about (0, -4).

Hope this helps!

You might be interested in
James folds a piece of paper in half several times,each time unfolding the paper to count how many equal parts he sees. After fo
Snezhnost [94]

Answer:

There will be total 2048 parts of the given paper if James if able to fold the paper eleven times.

The needed function is y = 2 ^n

Step-by-step explanation:

Let us assume the piece of paper James decides to fold is a SQUARE.

Now, let us assume:

n : the number of times the paper is folded.

y : The number of parts obtained after folds.

Now, if the paper if folded ONCE ⇒  n = 1

Also, when the pap er is folded once, the parts obtained are TWO equal parts.

⇒  for n = 1 , y = 2       ..... (1)

Similarly, if the paper if folded TWICE  ⇒  n = 2

Also, when the paper is folded twice, the parts obtained are FOUR equal parts.

⇒  for n = 2 , y = 4       ..... (2)

⇒y  = 2^2  =  2^n

Continuing the same way, if the paper is folded SEVEN times  ⇒  n = 7

So, y = 2^ n = 2^7 = 128

⇒  There are total 128 equal parts.

Lastly,  if the paper is folded ELEVEN  times  ⇒  n = 11

So, y = 2^ n = 2^{11} = 2048

⇒  There are total 2048 equal parts.

Hence, there will be total 2048 parts of the given paper if James if able to fold the paper eleven times.

And the needed function is y = 2 ^n

8 0
2 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
Consider a set of 7500 scores on a national test whose score is known to be distributed normally with a mean of 510 and a standa
german
\mathbb P(X>600)=\mathbb P\left(\dfrac{X-510}{85}>\dfrac{600-510}{85}\right)=\mathbb P(Z>1.059)\approx0.145

So approximately 14.5% of the scores are higher than 600. This means in a sample of 7500, one could expect to see 0.145\times7500\approx10.86 scores above 600.
5 0
2 years ago
According to a nutrition coach, a 100 kg person should eat
alexira [117]

Answer:

0.07%

Step-by-step explanation:

This equation is solving for what percentage of 100 kg is 0.07 kg.

1. Set up the equation

\frac{0.07}{100} = \frac{x}{100}

0.07 kg out of 100 kg is equal to x out of 100 because x represents the percentage and percentages are out of 100.

2. Solve by cross multiplying

100x = 7

3. Solve for x by dividing both sides by 100

x = 0.07

The answer is 0.07%

4 0
2 years ago
The cost of 18 pens is Rs. 150 . Find the cost of 66 such pen
Korvikt [17]
44kdjdjdjdjdjjdjdmddnjdjd
4 0
2 years ago
Read 2 more answers
Other questions:
  • Cheri took out a loan for $14,350. The loan term was 3 years and Cheri’s payments were $625.77 per month. Since Cheri had filed
    11·2 answers
  • Simplify fully 13/2x - 5/x
    9·2 answers
  • A tractor costs $12,250 and depreciates in value by 6% per year. How much will the tractor be worth in 6 years?
    14·2 answers
  • Dennis can type 65 words per minute. At this
    11·2 answers
  • A certain 3​-ft by 3​-ft rubber​ shop-floor mat costs ​$43. A 3​-ft by 4​-ft foam mat costs ​$27. Which of these mats has the lo
    7·1 answer
  • A pool has some initial amount of water in it. Then it starts being filled so the water level rises at a rate of 6 cm per minute
    9·1 answer
  • Suppose in the next year, 2007, College D's expenses and enrollment remain about the same, but in addition to their current reve
    12·1 answer
  • A train travels 45 feet in 1/10 if a second. How far will it travel in 3.5 seconds
    11·1 answer
  • Art walked 4.1 km in preparation for the Community Walk–a–thon. Bill walked 3600 m. How many more metres did Art walk than Bill?
    6·2 answers
  • Anand needs to hire a plumber. He's considering a plumber that charges an initial fee of $ 65 $65dollar sign, 65 along with an h
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!