c(x)=9x+89
I know that you don't have the answer listed, but it is the correct answer.
You might want to stick to at most five questions at once, makes it easier for the rest of us. :)
17. T has a vertical line of symmetry (along the center line).
18. Z looks the same if you turn it halfway around.
19. The passes total to 150°, which is a little less than 180°, so I estimate it would be in front of Kai.
20. Left is the -x direction. Up is the +y direction. this is (x-6, y+4)
21. Every dilation has a center (where it's dilated from) and a scale factor (how much it's dilated).
22. It must be A, because it's the only one where the number of moves adds up to 16.
23. It can be determined to be B just by tracking where point C would end up through the transformation.
24. A 180° rotation flips the signs on both components to give you (-1, 6).
25. Right is the +x direction. Down is the -y direction. (x+3, y-5)
26. This is a reflection.
Need clarification on anything?
Answer:
The area of the region between the two curves by integration over the x-axis is 9.9 square units.
Step-by-step explanation:
This case represents a definite integral, in which lower and upper limits are needed, which corresponds to the points where both intersect each other. That is:

Given that resulting expression is a second order polynomial of the form
, there are two real and distinct solutions. Roots of the expression are:
and
.
Now, it is also required to determine which part of the interval
is equal to a number greater than zero (positive). That is:


and
.
Therefore, exists two sub-intervals:
and
. Besides,
in each sub-interval. The definite integral of the region between the two curves over the x-axis is:




The area of the region between the two curves by integration over the x-axis is 9.9 square units.