Answer:B
Explanation:
Given
Distance of astronaut From asteroid x is 
Distance of astronaut From asteroid Y is 
Suppose M,M_x,M_y be the masses of Astronaut , asteroid X and Y
If the astronaut is in equilibrium then net gravitational force on it is zero


cancel out the common terms we get




a) 120 s
b) v = 0.052R [m/s]
Explanation:
a)
The period of a revolution in a simple harmonic motion is the time taken for the object in motion to complete one cycle (in this case, the time taken to complete one revolution).
The graph of the problem is missing, find it in attachment.
To find the period of revolution of the book, we have to find the time between two consecutive points of the graph that have exactly the same shape, which correspond to two points in which the book is located at the same position.
The first point we take is t = 0, when the position of the book is x = 0.
Then, the next point with same shape is at t = 120 s, where the book returns at x = 0 m.
Therefore, the period is
T = 120 s - 0 s = 120 s
b)
The tangential speed of the book is given by the ratio between the distance covered during one revolution, which is the perimeter of the wheel, and the time taken, which is the period.
The perimeter of the wheel is:

where R is the radius of the wheel.
The period of revolution is:

Therefore, the tangential speed of the book is:

Answer:
cold air is more dense than warm water so it sinks to the bottom of the pool
Answer:
Gravity
Explanation:
The answer is gravity because when the 3 masses were hung from the spring, gravity pulled the spring towards the ground.