Those are the correct steps, young chemist. Don't be discouraged by an insane answer.
Answer:
The rate of decay of atoms in container A is greater than the rate of decay of atoms in container B.
Explanation:
From the question,
Container A contains 1000 atoms
Container B contains 500 atoms
<u>The rate of decay of atoms in container A is greater than the rate of decay of atoms in container B.</u>
The reason for such is due to the difference in the concentration of the isotopes. Container A which contains higher number of atoms will have the more changes of the release of the neutron as the changes of the hitting and splitting increases as the density of the atoms increases.
<u>Thus, the atoms in the container A will therefore decay faster than the atoms in the container B. </u>
Answer:
% = 11.11%
Explanation:
To get the %m/m of any solution we should use the following expression:
%m/m = m solute / m solution * 100
we have the mass of solute, but not the mass of solution, however this can be calculated. solution is made using solute and solvent so:
m solution = 25 + 200 = 225 g
Now that we have the mass of solution, we can calculate the %:
%m/m = 25 / 225 * 100
%m/m = 11.11%
This is the %m/m of this solution
Answer:
The term conclusion best illustrates the given statement.
Explanation:
Conclusion refers to a decision or judgment that can be acquired by reasoning. From the observation mentioned in the given table:
1. The steel, aluminum, and bronze took 27, 45 and 80 seconds to dissolve small section of wax, this signifies that more time will be needed by them to transfer heat to the food while cooking. Thus, food will take more time to cook in them.
2. Copper consumed less time, that is, 15 seconds to melt the section of wax than the other metal pots, which signifies that it is a good conductor of heat than the others. Thus, the copper pot would be good for cooking food briskly.
After evaluating the results and observations in an experiment, the conclusion was made that pots made of copper are best for cooking foods.
Answer:
Here's what I get.
Explanation:
The frequency of a vibration depends on the strength of the bond (the force constant).
The stronger the bond, the more energy is needed for the vibration, so the frequency (f) and the wavenumber increase.
Acetophenone
Resonance interactions with the aromatic ring give the C=O bond in acetophenone a mix of single- and double-bond character, and the bond frequency = 1685 cm⁻¹.
p-Aminoacetophenone
The +R effect of the amino group increases the single-bond character of the C=O bond. The bond lengthens, so it becomes weaker.
The vibrational energy decreases, so wavenumber decreases to 1652 cm⁻¹.
p-Nitroacetophenone
The nitro group puts a partial positive charge on C-1. The -I effect withdraws electrons from the acetyl group.
As electron density moves toward C-1, the double bond character of the C=O group increases.
The bond length decreases, so the bond becomes stronger, and wavenumber increases to 1693 cm¹.