answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
2 years ago
11

The average annual amount American households spend for daily transportation is $6312 (Money, August 2001). Assume that the amou

nt spent is normally distributed.a. Suppose you learn that 5% of American households spend less than $1000 for dailytransportation. What is the standard deviation of the amount spent?b. What is the probability that a household spends between $4000 and $6000?c. What is the range of spending for the 3% of households with the highest daily transportationcost?
Mathematics
1 answer:
lions [1.4K]2 years ago
8 0

Answer:

(a) The standard deviation of the amount spent is $3229.18.

(b) The probability that a household spends between $4000 and $6000 is 0.2283.

(c) The range of spending for 3% of households with the highest daily transportation cost is $12382.86 or more.

Step-by-step explanation:

We are given that the average annual amount American households spend on daily transportation is $6312 (Money, August 2001). Assume that the amount spent is normally distributed.

(a) It is stated that 5% of American households spend less than $1000 for daily transportation.

Let X = <u><em>the amount spent on daily transportation</em></u>

The z-score probability distribution for the normal distribution is given by;

                          Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = average annual amount American households spend on daily transportation = $6,312

           \sigma = standard deviation

Now, 5% of American households spend less than $1000 on daily transportation means that;

                      P(X < $1,000) = 0.05

                      P( \frac{X-\mu}{\sigma} < \frac{\$1000-\$6312}{\sigma} ) = 0.05

                      P(Z < \frac{\$1000-\$6312}{\sigma} ) = 0.05

In the z-table, the critical value of z which represents the area of below 5% is given as -1.645, this means;

                           \frac{\$1000-\$6312}{\sigma}=-1.645                

                            \sigma=\frac{-\$5312}{-1.645}  = 3229.18

So, the standard deviation of the amount spent is $3229.18.

(b) The probability that a household spends between $4000 and $6000 is given by = P($4000 < X < $6000)

      P($4000 < X < $6000) = P(X < $6000) - P(X \leq $4000)

 P(X < $6000) = P( \frac{X-\mu}{\sigma} < \frac{\$6000-\$6312}{\$3229.18} ) = P(Z < -0.09) = 1 - P(Z \leq 0.09)

                                                            = 1 - 0.5359 = 0.4641

 P(X \leq $4000) = P( \frac{X-\mu}{\sigma} \leq \frac{\$4000-\$6312}{\$3229.18} ) = P(Z \leq -0.72) = 1 - P(Z < 0.72)

                                                            = 1 - 0.7642 = 0.2358  

Therefore, P($4000 < X < $6000) = 0.4641 - 0.2358 = 0.2283.

(c) The range of spending for 3% of households with the highest daily transportation cost is given by;

                    P(X > x) = 0.03   {where x is the required range}

                    P( \frac{X-\mu}{\sigma} > \frac{x-\$6312}{3229.18} ) = 0.03

                    P(Z > \frac{x-\$6312}{3229.18} ) = 0.03

In the z-table, the critical value of z which represents the area of top 3% is given as 1.88, this means;

                           \frac{x-\$6312}{3229.18}=1.88                

                         {x-\$6312}=1.88\times 3229.18  

                          x = $6312 + 6070.86 = $12382.86

So, the range of spending for 3% of households with the highest daily transportation cost is $12382.86 or more.

You might be interested in
Imaginá que tenés 125 dados cúbicos del mismo tamaño ¿Cuantos dados de altura tiene el cubo de mayor tamaño que podés armar apil
kumpel [21]

Answer:

(i) Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

Step-by-step explanation:

(i) Sabemos por la Geometría Euclídea del Espacio que un cubo es un sólido regular con 6 caras cuadradas y longitudes iguales. Cada dado tiene un volumen de 1 dado cúbico y 125 dados dan un volumen total de 125 dados cúbicos.

El volumen de un cubo está dado por la siguiente fórmula:

V = L^{3}

Donde:

L - Longitud de la arista, medida en dados.

V - Volumen del cubo, medido en dados cúbicos.

Ahora, necesitamos despejar la longitud de la arista para calcular la altura máxima posible:

L = \sqrt[3]{V}

Dado que V = 125\,dados^{3}, encontramos que la altura del cubo de mayor tamaño sería:

L =\sqrt[3]{125\,dados^{3}}

L = 5\,dados

Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) El área cuadrada formada por cubos está determinada por la siguiente fórmula:

A = L^{2}

Donde:

L - Longitud de arista, medida en dados.

A - Área, medida en dados cuadrados.

Puesto que la longitud de arista se basa en un conjunto discreto, esto es, el número de dados disponibles, debemos encontrar el valor máximo de L tal que no supere 125 y de un área entera. Es decir:

L \leq 125\,dados

Si cada cubo tiene un área de 1 dado cuadrado, entonces un cuadrado conformado por 125 dados tiene un área total de 125 dados cuadrados. Entonces:

L^{2}< 125\,dados^{2}

Esto nos lleva a decir que:

L < 11.180\,dados

Entonces, la longitud máxima del cuadrado con la mayor cantidad de cubos posible es de 11 dados. El número total requerido de cubos es el cuadrado de esa cifra, es decir:

n = (11\,dados)^{2}

n = 121\,dados

Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

4 0
2 years ago
Show a way to count from 170 to 410 using tens and hundreds. circle at least 1 benchmark number
Anastasy [175]
Benchmark are numbers that are used as standards to which the rest of the data is compared to. When counting numbers using a number line, the benchmark numbers are the intervals written on the axis. For benchmark numbers of 10, the number line on top of the attached picture is shown. Starting from 170, the tick marks are added by 10, such that the next numbers are 180, 190, 200, and so on and so forth. When you want to find 410, just find the benchmark number 410.

The same applies to benchmark numbers in intervals of 100. If you want to find 170, used the benchmark numbers 100 and 200. Then, you estimate at which point represents 170. For 410, you base on the benchmark numbers 400 and 500.

6 0
2 years ago
Read 2 more answers
The figure below shows the dimensions of a city park in feet. Shannon thinks the area of city park is 73,084 square feet. Do you
Andreyy89

Answer:

We need to solve for the 4th side

4th side base = 75.5 -60.5 = 10 feet

4th side height = 16

4th side LENGTH^2 = 10^2 + 16^2

4th side = sq root (356) = 18.8679622641

Trapezoid Area = [(sum of the bases) / 2 ] * height

Trapezoid Area = [(136)/2] * 16

Trapezoid Area = 1,088 square feet, which is MUCH smaller

than 73,084

Step-by-step explanation:

3 0
2 years ago
After watching the video below, explain what is happening in your own words. What percent of the original dollar size will the 4
RSB [31]

Answer:

is there an image or something idk the vid

6 0
2 years ago
Rita is planting saplings along her garden fence. When she started, she had x packages of saplings with 5 saplings per package.
Arturiano [62]

Answer:

<u>A. When Rita started, she had 7 packages of saplings.</u>

<u>B. If we represent x (number of packages of saplings) on a number line graph, it will start on number 4 (number of packages Rita still has) then moves to the right to number 7, that is the number of packages when Rita started to plant.</u>

Step-by-step explanation:

1. Let's review the information given to us to answer the question correctly:

Number of packages Rita started = x

Number of saplings per package = 5

Number of saplings planted by Rita = 15

Number of saplings left = 20

2. How many packages of saplings did she start with?

Number of packages Rita started = (Number of saplings planted by Rita + Number of saplings left)/Number of saplings per package

Replacing with the real values:

x = (15 + 20)/5

x = 35/5 = 7

<u>When Rita started, she had 7 packages of saplings.</u>

3. What would the solution look like on a number line graph?

If we represent x (number of packages of saplings) on a number line graph, it will start on number 4 (number of packages Rita still has) then moves to the right to number 7, that is the number of packages when Rita started to plant.

5 0
2 years ago
Other questions:
  • At summer camp the ratio of boys to girls was 7:2 If there were 21 boys how many girls were there?
    11·1 answer
  • Orly uses 2 cups of raisins for every 9 cups of trail mix she makes. How many cups of trail mix will she make if she uses 12 cup
    11·1 answer
  • Ed bought 3 liters of water, 2,750 milliliters of sports drinks, and 2.25 liters of juice. For numbers 4a-4e, select True or Fal
    14·1 answer
  • Which statements are true regarding the development of trigonometry? Check all that apply.
    14·2 answers
  • Tasha invests in an account that pays 1.5% compound interest annually. She uses the expression P(1+r)t to find the total value o
    13·2 answers
  • Erica saw a skateboard on sale for $59.95. The original price of the skateboard was $79.95. What is the approximate percent disc
    5·2 answers
  • Sheila has $89 in her bank account. She uses 30% of her money to pay a bill. Chose from the following list:
    12·1 answer
  • Three times the sum of half Carlita's age and 3 is at least 12. What values represent Carlita's possible age?
    10·2 answers
  • Select the correct values in the table.
    14·1 answer
  • Jared is 10 years old. His brother Peter is 15 years old. What are some chewy fruit worms they can share without having to make
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!