The question provides the data in an incorrect way, but what the question is asking is for the entropy change when combining 3 moles of water at 0 °C (273.15 K) with 1 mole of water at 100 °C (373.15 K). We are told the molar heat capacity is 75.3 J/Kmol. We will be using the following formula to calculate the entropy change of each portion of water:
ΔS = nCln(T₂/T₁)
n = number of moles
C = molar heat capacity
T₂ = final temperature
T₁ = initial temperature
We can first find the equilibrium temperature of the mixture which will be the value of T₂ in each case:
[(3 moles)(273.15 K) + (1 mole)(373.15 K)]/(4 moles) = 298.15 K
Now we can find the change in entropy for the 3 moles of water heating up to 298.15 K and the 1 mole of water cooling down to 298.15 K:
ΔS = (3 moles)(75.3 J/Kmol)ln(298.15/273.15)
ΔS = 19.8 J/K
ΔS = (1 mole)(75.3 J/Kmol)ln(298.15/373.15)
ΔS = -16.9 J/K
Now we combine the entropy change of each portion of water to get the total entropy change for the system:
ΔS = 19.8 J/K + (-16.9 J/K)
ΔS = 2.9 J/K
The entropy change for combining the two temperatures of water is 2.9 J/K.
When the concentration is expressed in molality, it is expressed in moles of solute per kilogram of solvent. Since we are given the mass of the solvent, which is water, we can compute for the moles of solute NaNO3.
0.5 m = x mol NaNO3/0.5 kg water
x = 0.25 mol NaNO3
Since the molar mass of NaNO3 is 85 g/mol, the mass is
0.25 mol * 85 g/mol = 21.25 grams NaNO3 needed
Answer : Chemicals A and B form an endothermic reaction, and chemicals C and D form an exothermic reaction.
Explanation :
Endothermic reaction : When the system absorb heat from the surrounding then the surrounding become cool.
Exothermic reaction : when the system releases heat into the surrounding then the surrounding become hot.
According to the question,
when we mixed chemical A and chemical B together in a test tube to form chemical C, the mixture become cool. This means that the system is absorbing heat from the surrounding and thus the reaction is called a endothermic reaction.
And when we added chemical D in chemical C, the new mixture becomes hot and explodes. This means that the system is releasing heat into the surrounding and thus the reaction is called as exothermic reaction.
The number of Ml of C₅H₈ that can be made from 366 ml C₅H₁₂ is 314.7 ml of C₅H₈
<u><em>calculation</em></u>
step 1: write the equation for formation of C₅H₈
C₅H₁₂ → C₅H₈ + 2 H₂
Step 2: find the mass of C₅H₁₂
mass = density × volume
= 0.620 g/ml × 366 ml =226.92 g
Step 3: find moles Of C₅H₁₂
moles = mass÷ molar mass
from periodic table the molar mass of C₅H₁₂ = (12 x5) +( 1 x12) = 72 g/mol
moles = 226.92 g÷ 72 g/mol =3.152 moles
Step 4: use the mole ratio to determine the moles of C₅H₈
C₅H₁₂:C₅H₈ is 1:1 from equation above
Therefore the moles of C₅H₈ is also = 3.152 moles
Step 5: find the mass of C₅H₈
mass = moles x molar mass
from periodic table the molar mass of C₅H₈ = (12 x5) +( 1 x8) = 68 g/mol
= 3.152 moles x 68 g/mol = 214.34 g
Step 6: find Ml of C₅H₈
=mass / density
= 214.34 g/0.681 g/ml = 314.7 ml
Answer:
maximum possible volume flow rate = V = 0.5m^3/s
Explanation:
Given power consumed = 3.5kW
pressure difference ( delta -P) = 7kPa
let maximum possible volume flow rate = V
The rate of flow of work = W = V x Delta -P
hence, V = W/delta P
V = 3.5/7
V = 0.5m^3/s