13%, 5 years, 2500 could most likely maybe be the answer a question
What you can use for this case is a function of the potential type.
We have then
y = a (b) ^ x
Where we have:
Walker starts the fund by depositing $ 5
a = 5
Each week the balance of the fund is twice the balance of the previous week:
b = 2
The function is:
y = 5 (2) ^ x
The number of weeks to reach $ 1280 is 8 weeks.
Check:
y = 5 (2) ^ 8
y = 1280
Answer:
An equation can be used to find the number of weeks, x, after which the balance of the fund will reach $ 1,280 is:
y = 5 (2) ^ x
The number of weeks that it takes to reach the class goal is
8 weeks
False because it doesn’t meet any triangle congruence theoreme
Answer:
The Point C shows the location of 5-2i in the complex plane: 5 points to the right of the origin and 2 points down from the origin.
Step-by-step explanation:
We have the complex number 5-2i and we have to show the location of the point that represents that number in the complex plane
In the complex plane the real numbers are located in the horizontal axis, increasing to the right. The positives real numbers are at the right of the origin and the negatives to the left.
The complex numbers are located in the vertical axis, with the positives over the origin and the negatives below the origin.
This complex number 5-2i is the sum of a real part (5) and a imaginary part (-2i), so the point will be 5 units rigth on the horizontal axis (for the real part) and 2 units down in the vertical axis (for the imaginary part).
We know that
Half-life is modeled by the formula
An=A0*(0.5)<span>^[t/h)]
where
An----------> </span>is the amount remaining after a time t
A0----------> is the initial quantity
t------------> is the time
h------------> is the half-life of the decaying quantity
in this problem
h=1601 years
A0=50 g
An=?
t=100 years
An=A0*(0.5)^[t/h)]---------> An=50*(0.5)^[100/1601)]-----> 47.88 gr
the answer is 47.88 g