Answer and Explanation:
The answer is attached below
Answer:
Fatec – SP) Seja A um ponto pertencente à reta r, contida no plano α. É verdade que:
a) existe uma única reta que é perpendicular à reta r no ponto A.
b) existe uma única reta, não contida no plano α, que é paralela à reta r.
c) existem infinitos planos distintos entre si, paralelos ao plano α, que contém a reta r.
d) existem infinitos planos distintos entre si, perpendiculares ao plano α e que contêm a reta r.
e) existem infinitas retas distintas entre si, contidas no plano α e que são paralelas à reta r.
2. (UF – AL) Classifique como verdadeira ou falsa cada uma das afirmativas abaixo.
1) Duas retas que não têm pontos com
<em>You should take note and exercise extreme precautions when you are near power lines and consider the following:
</em>
<em>
</em>
<em>1. Make sure that you have a good distance away from the lines. The minimum distance you can get is 10 feet away from the lines. Be cautious as well when you see broken lines as they could still harm you and electrified you.
</em>
<em>2. Do not make ladders, equipments and things around you touch the power lines as it may harm you as well.
</em>
<em>3. Clear everything and ensure that no things are near you before you lift your hands and other tools.</em>
Answer:
For aluminum 110.53 C
For copper 110.32 C
Explanation:
Heat transmission through a plate (considering it as an infinite plate, as in omitting the effects at the borders) follows this equation:

Where
q: heat transferred
k: conduction coeficient
A: surface area
th: hot temperature
tc: cold temperature
d: thickness of the plate
Rearranging the terms:
d * q = k * A * (th - tc)


The surface area is:


If the pan is aluminum:

If the pan is copper:

Answer:
σ = 391.2 MPa
Explanation:
The relation between true stress and true strain is given as:
σ = k εⁿ
where,
σ = true stress = 365 MPa
k = constant
ε = true strain = Change in Length/Original Length
ε = (61.8 - 54.8)/54.8 = 0.128
n = strain hardening exponent = 0.2
Therefore,
365 MPa = K (0.128)^0.2
K = 365 MPa/(0.128)^0.2
k = 550.62 MPa
Now, we have the following data:
σ = true stress = ?
k = constant = 550.62 MPa
ε = true strain = Change in Length/Original Length
ε = (64.7 - 54.8)/54.8 = 0.181
n = strain hardening exponent = 0.2
Therefore,
σ = (550.62 MPa)(0.181)^0.2
<u>σ = 391.2 MPa</u>