Answer:
(x - 5)(x + 2)
Step-by-step explanation:
x² - 3x - 10 =
= x² + 2x - 5x - 10
= x(x + 2) - 5(x + 2)
= (x - 5)(x + 2)
Answer:
a. 5 + 2i, 13 + 2i, 29 + 2i
Step-by-step explanation:
We'll use the formula f(z) = 2z + (3 - 2i) for each iteration. The output of the first iteration will be come the input of the second iteration, and so on.
So, we start with z0 = 1 + 2i and we plug that into the base equation:
z0 = 1 + 2i ==> f(z) = 2(1 + 2i) + 3 - 2i = 2 + 4i + 3 - 2i = 5 + 2i
z1 = 5 + 2i ==> f(z) = 2(5 + 2i) + 3 - 2i = 10 + 4i + 3 - 2i = 13 + 2i
z2 = 13 + 2i ==> f(z) = 2(13 + 2i) + 3 - 2i = 26 + 4i + 3 - 2i = 29 + 2i
z3 = 29 + 2i
I see the solution in three steps.
1.) RS ⊥ ST, RS ⊥ SQ, ∠STR ≅ ∠SQR | Given
2.) RS<span>≅RS | Reflexive Property
3.) </span><span>△RST ≅ △RSQ | AAS Triangle Congruence Property</span>