Answer:
92.65256 cm^3
Explanation:
To find this, we can simply multiply all three dimensions to get the answer in cubic centimeters, and we get the answer above. If you want to be more specific, we can go by the sigfig rule and the answer would be rounded to 93 cm^3.
2C3H6 (g) + 2NH3 (g) + 3O2 (G) -> 2C3H3N (g) + 6H2O (g)
First off.. not a chem board.. but n e way.
This is a limiting reagent problem.
set it up as a DA problem.(Dimension Analysis)
Start with what you want.
you want Grams of acrylonitrile (C3H3N)
so start with that (Using ACL in place of Acrylonitrile.. just for ease of typing)
(g) = (53 g of ACL/1mol ACL) (2 mols ACL/2 mol C3H6)/ (1mol C3H6/42 grams) (15.0 grams)
solve that you wiill get grams of Acrylonitrile created by 15 grams oc C3H6 = 18.9g
Same setup for the two other reactants.
so i did it and for
oxygen I got 11.04 grams
and for Ammonia i got 15.29 grams
So the most you can make is 11.04 grams because if you have ot make any more .. you will have to get more O2 .. but since you have only 10 grams of it .. that is the most u can make in this reaction.
Both the other reactants are in excess.
rate brainliest pls
The new volume at standard pressure of 1 atm is 21294 liters.
Explanation:
Data given:
Initial volume of the gas V1 = 338 liters
initial pressure on the gas P1 = 63 atm
standard pressure as P2 = 1 atm
Final volume at standard pressure V2 =?
The data given shows that Boyle's law equation is to used:
P1V1 = P2V2
rearranging the equation to calculate V2,
V2 = 
Putting the values in the equation:
V2 = 
= 21294 L
as the pressure on the gas is reduced to 1 atm the volume of the gas increased incredibly to 21294 litres.
Adding or removing protons from the nucleus changes the charge of the nucleus and changes that atom's atomic number. So, adding or removing protons from the nucleus changes what element that atom is! For example, adding a proton to the nucleus of an atom of hydrogen creates an atom of helium.
Sodium-22 remain : 1.13 g
<h3>Further explanation
</h3>
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually, radioactive elements have an unstable atomic nucleus.
General formulas used in decay:

T = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
half-life = t 1/2=2.6 years
T=15.6 years
No=72.5 g
