The answer & explanation for this question is given in the attachment below.
a.
Acids react with bases and give salt and water and the products.
Hence, HCl reacts with NaOH and gives NaCl salt and H₂O as the products. The reaction is,
HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l)
To balance the reaction equation, both sides hould have same number of elements.
Left hand side, Right hand side,
H atoms = 2 H atoms = 2
Cl atoms = 1 Cl atoms = 1
Na atoms = 1 Na atoms = 1
O atoms = 1 O atoms = 1
Hence, the reaction equation is already balanced.
b.
Molarity (M)= moles of solute (mol) / Volume of the solution (L)
HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l)
Molarity of NaOH = <span>0.13 M
</span>Volume of NaOH added = <span>43.7 mL
Hence, moles of NaOH added = 0.13 M x 43.7 x 10</span>⁻³ L
= 5.681 x 10⁻³ mol
Stoichiometric ratio between NaOH and HCl is 1 : 1
Hence, moles of HCl = moles of NaOH
= 5.681 x 10⁻³ mol
5.681 x 10⁻³ mol of HCl was in <span>26.9 mL.
Hence, molarity of HCl = </span>5.681 x 10⁻³ mol / 26.9 x 10⁻³ L
= 0.21 M
The answer is 3.39 mol.
<span>Avogadro's number is the number of molecules in 1 mol of substance.
</span><span>6.02 × 10²³ molecules per 1 mol.
</span>2.04 × 10²⁴<span> molecules per x.
</span>6.02 × 10²³ molecules : 1 mol = 2.04 × 10²⁴ molecules : x
x = 2.04 × 10²⁴ molecules * 1 mol : 6.02 × 10²³ molecules
x = 2.04/ 6.02 × 10²⁴⁻²³ mol
x = 0.339 × 10 mol
<span>x = 3.39 mol
</span>
The amount of substance present in a certain object with a given half-life in terms of h can be expressed through the equation,
A(t) = (A(o))(0.5)^(t/h)
where A(t) is the amount of substance after t years and A(o) is the original amount. In this item we are given that A(t)/A(o) is equal to 0.89. Substituting the known values,
0.89 = (0.5)(t / 5730 years)
The value of t from the equation is 963.34 years.
<em>Answer: 963 years</em>
Answer:
Explanation:
<u>1) Data:</u>
a) Hypochlorous acid = HClO
b) [HClO} = 0.015
c) pH = 4.64
d) pKa = ?
<u>2) Strategy:</u>
With the pH calculate [H₃O⁺], then use the equilibrium equation to calculate the equilibrium constant, Ka, and finally calculate pKa from the definition.
<u>3) Solution:</u>
a) pH
b) Equilibrium equation: HClO (aq) ⇄ ClO⁻ (aq) + H₃O⁺ (aq)
c) Equilibrium constant: Ka = [ClO⁻] [H₃O⁺] / [HClO]
d) From the stoichiometry: [CLO⁻] = [H₃O⁺] = 2.29 × 10 ⁻⁵ M
e) By substitution: Ka = (2.29 × 10 ⁻⁵ M)² / 0.015M = 3.50 × 10⁻⁸ M
f) By definition: pKa = - log Ka = - log (3.50 × 10 ⁻⁸) = 7.46