Answer:
No, the puddle was formed because of the sun, because if there was snow and it rained then it would have turned slippery or icy
Answer:
39.2 %
Explanation:
The following data were obtained from the question:
Mass of sample = 24 g
Mass of Cl = 14.6 g
Mass of B = 9.4 g
Percentage composition of boron =?
The percentage composition (by mass) of boron in the sample can be obtained as illustrated below:
Percentage composition of boron = mass of B /mass of sample × 100
Percentage composition of boron = 9.4/24 × 100
Percentage composition of boron = 39.2 %
Therefore, the percentage composition (by mass) of boron in the sample is 39.2 %
Answer : The expected coordination number of NaBr is, 6.
Explanation :
Cation-anion radius ratio : It is defined as the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-anion compound.
This is represented by,

When the radius ratio is greater than 0.155, then the compound will be stable.
Now we have to determine the radius ration for NaBr.
Given:
Radius of cation,
= 102 pm
Radius of cation,
= 196 pm

As per question, the radius of cation-anion ratio is between 0.414-0.732. So, the coordination number of NaBr will be, 6.
The relation between radius ratio and coordination number are shown below.
Therefore, the expected coordination number of NaBr is, 6.
Answer:
Groups of atoms that are added to carbon backbones and give them unique properties are known as <u>Functional Groups</u>.
Explanation:
In organic chemistry they are called as Functional Group because they are the active part of a molecule. These groups give a unique characteristic to molecule both chemically and physically. Also, each functional group represent a different class of compounds.
Examples:
S No. Functional Group Name
1 R--X Alkyl Halides
2 R--OH Alcohols
3 R--NH₂ Amines
4 R--O--R Ethers
5 R--CO--R Ketones
6 R--CO--H Aldehydes
7 R--CO--OH Carboxylic acids
8 R--CO--X Acid Halides
10 R--CO--NR₂ Acid Amides
11 R--CO-OR' Esters
Answer:
The final temperature of water is 54.5 °C.
Explanation:
Given data:
Energy transferred = 65 Kj
Mass of water = 450 g
Initial temperature = T1 = 20 °C
Final temperature= T2 = ?
Solution:
First of all we will convert the heat in Kj to joule.
1 Kj = 1000 j
65× 1000 = 65000 j
specific heat of water is 4.186 J /g. °C
Formula:
q = m × c × ΔT
ΔT = T2 - T1
Now we will put the values in Formula.
65000 j = 450 g × 4.186 J /g. °C × (T2 - 20°C )
65000 j = 1883.7 j /°C × (T2 - 20°C )
65000 j/ 1883.7 j /°C = T2 - 20°C
34.51 °C = T2 - 20°C
34.51 °C + 20 °C = T2
T2 = 54.5 °C