solution:
Hydration is the addition of water; hydrogenation is the addition of hydrogen.
desire rxn: _C4H6(g) + 2 H2(g)-----> C4H10(g)___dHhy = ??
knowns:
__________C4H6 + 11/2 O2 --------> 4CO2 + 3H2O______dHox = -2540.2 kJ/mole
__________4CO2 + 5H2O -----------> C4H10 + 13/2 O2___-dHox = 2877.6 kJ/mole
___________2(1/2 O2 + H2 -------------> H2O)___________2*dHox = 2(-285.8 kJ/mole)
Basic mathematics is a prerequisite to chemistry – I just try to help you with the methodology of solving the problem
Answer 1:
Equilibrium constant (K) mathematically expressed as the ratio of the concentration of products to concentration of reactant. In case of gaseous system, partial pressure is used, instead to concentration.
In present case, following reaction is involved:
2NO2 ↔ 2NO + O2
Here, K =
![\frac{[PNO]^2[O2]}{[PNO2]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BPNO%5D%5E2%5BO2%5D%7D%7B%5BPNO2%5D%5E2%7D%20)
Given: At equilibrium, <span>PNO2= 0.247 atm, PNO = 0.0022atm, and PO2 = 0.0011 atm
</span>
Hence, K =
![\frac{[0.0022]^2[0.0011]}{[0.247]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5B0.0022%5D%5E2%5B0.0011%5D%7D%7B%5B0.247%5D%5E2%7D%20)
= 8.727 X 10^-8
Thus, equilibrium constant of reaction = 8.727 X 10^-8
.......................................................................................................................
Answer 2:
Given: <span>PNO2= 0.192 atm, PNO = 0.021 atm, and PO2 = 0.037 atm.
Therefore, Reaction quotient = </span>
![\frac{[PNO]^2[O2]}{[PNO2]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BPNO%5D%5E2%5BO2%5D%7D%7B%5BPNO2%5D%5E2%7D%20)
=
![\frac{[0.021]^2[0.037]}{[0.192]^2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5B0.021%5D%5E2%5B0.037%5D%7D%7B%5B0.192%5D%5E2%7D%20)
= 4.426 X 10^-4.
Here, Reaction quotient > Equilibrium constant.
Hence, <span>the reaction need to go to
reverse direction to reattain equilibrium </span>
The answer is the choice A
You multiply avogadro's number to what you were given.
8.30x10^23 * 6. 0221409x10^23
=1.357*10^25
That should be the right answer but I'm not sure. It has been awhile since I have done this.