<h3>
Answer:</h3>
B. 0.33 mol
<h3>
Explanation:</h3>
We are given;
Gauge pressure, P = 61 kPa (but 1 atm = 101.325 kPa)
= 0.602 atm
Volume, V = 5.2 liters
Temperature, T = 32°C, but K = °C + 273.15
thus, T = 305.15 K
We are required to determine the number of moles of air.
We are going to use the concept of ideal gas equation.
- According to the ideal gas equation, PV = nRT, where P is the pressure, V is the volume, R is the ideal gas constant, (0.082057 L.atm mol.K, n is the number of moles and T is the absolute temperature.
- Therefore, to find the number of moles we replace the variables in the equation.
- Note that the total ball pressure will be given by the sum of atmospheric pressure and the gauge
- Therefore;
- Total pressure = Atmospheric pressure + Gauge pressure
We know atmospheric pressure is 101.325 kPa or 1 atm
Total ball pressure = 1 atm + 0.602 atm
= 1.602 atm
That is;
PV = nRT
n = PV ÷ RT
therefore;
n = (1.602 atm× 5.2 L) ÷ (0.082057 × 305.15 K)
= 0.3326 moles
= 0.33 moles
Therefore, there are 0.33 moles of air in the ball.
2.67 is the hsjshkahsjahsgz hi ajahsghsjahaysjs
The problem talks about two questions and these are:
1. Metals are very good conductors of electricity and heat. Directing heat is easier. So let Marie heat the beads and also have heat another substance, for instance, water. If the beads heat quicker, then they are metals. Another test to conduct is called flame test. This test should give you a colored flame (blue/white for lead) the metal is lead if the reaction is: 2PbO+C ==> 2Pb +CO2
2. The beads are possibly to be lead since Ferrous(lead) oxide + carbon = carbon dioxide + lead
Answer:It is not an element because elements are the purest form of a substance; hence, they are no longer broken down by heating
Explanation:
Answer: 
Explanation:
The balanced chemical equation :
To calculate the moles, we use the equation:

According to stoichiometry:
4 moles of
produces = 902.0 kJ of energy
415.1 moles of
produces =
of energy
Thus the change in enthalpy is 